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Abstract—In this work, we build dedicated learning models
for micro-Doppler radar time series classification. We develop
both deep temporal architectures based on time-frequency rep-
resentations, and also directly study the signal’s underlying
statistical Gaussian process using Information Geometry on
Riemannian manifolds by developing and improving symmetric
positive definite (SPD) neural networks. We also propose the
aggregation of all proposed models in a single, highly performing
classification piepline.

I. INTRODUCTION

Machine Learning, and in particular Deep Learning, is
a powerful tool to model and study the intrinsic statistical
foundations of data, allowing the extraction of meaningful,
human-interpretable information from otherwise unpalatable
arrays of floating points. While it provides a generic solution
to many problems, some particular data types exhibit strong
underlying physical structure: images have spatial locality,
audio has temporal sequentiality, radar has time-frequency
structure. Both intuitively and formally, there can be much
to gain in leveraging this structure by adapting the subsequent
learning models. As convolutional architectures for images,
signal properties can be encoded and harnessed within the
network. Conceptually, this would allow for a more intrinsic
handling of the data, potentially leading to more efficient
learning models. Thus, we will aim to use known structures
in the signals as model priors. Specifically, we build dedicated
deep temporal architectures for time series classification, and
explore the use of complex values in neural networks to further
refine the analysis of structured data.

Going even further, one may wish to directly study the
signal’s underlying statistical process. As such, Gaussian fam-
ilies constitute a popular candidate. Formally, the covariance
of the data fully characterizes such a distribution; develop-
ing ML algorithms on covariance matrices will thus be a
central theme throughout this work. Statistical distributions
inherently diverge from the Euclidean framework; as such,
it is necessary to study them on the appropriate, curved
Riemannian manifold, as opposed to a flat, Euclidean space.
Specifically, we contribute to existing deep architectures by
adding normalizations in the form of data-aware mappings,

and a Riemannian batch normalization algorithm. We show-
case empirical validation through a variety of different tasks,
with a sharpened focus on micro-Doppler radar data for non-
cooperative drone recognition. Figure [T]illustrates the diversity
of possible micro-Doppler input representations.
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Fig. 1. Raw signal and its Fourier and covariance representations. The raw
signal is split through a sliding window, from which either covariance or
Fourier transform can be computed.
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To summarize our proposed contributions:

> A Fully Temporal Convolutional Network (FTCN) de-
signed to respect the temporal structure of the data;

> Two closely resembling complex declinations of the
FTCN, notably:

— A CRNet, with a design inspired from signal
analysis principles;
— A Fourier convolution layer, allowing the training
from raw complex temporal data, yielding a
FourierNet architecture;
> A full pipeline for structured time series classification,
combining multiple representations and models, called
Second-Order Fully Temporal Network (SOFTNet);
> A neural architecture called DAMNet with two new
layers (which are mutually exclusive):



— A barycentric normalization layer using a Rie-
mannian barycenter (BarNorm);

— A parametric normalization layer using a SPD-
constrained parameter (ParNorm);

> A neural architecture called SPDNetBN with one new
layer:

— A Riemannian batch normalization layer for SPD
neural networks, respecting the manifold’s geom-
etry;

> A generalized gradient descent allowing to learn the
DAMNet and SPDNetBN models;

> A convolutional layer for SPD matrices;

> A micro-Doppler drone radar simulator to allow for
extensive experimental studies;

> Validation, comparison and interpretation of the various
models, on both simulated and real data.

II. SECOND-ORDER PIPELINE FOR TEMPORAL
CLASSIFICATION

This first section makes use of the multiplicity and connect-
edness of structured time series representations such as micro-
Doppler radar data, to build independent learning models upon
different representations, and combine these models in a single
classification pipeline to harness the full underlying geometric
structure of the data.

A. Learning on structured time series representations

Succintly, a temporal signal such as micro-Doppler data
can take a variety of forms, each one highlighting a different
set of properties within the signal (Flandrin [1998} Hlawatsch
and Auger 2013). Each representation is then best fit by an
individual learning model (Stoica and Moses [2005; Moruzzis
and Colin [1998§)).

The notion of covariance, tightly linked to that of the
Fourier transform, showcases a powerful, geometrically accu-
rate yet compact micro-Doppler representation. However, its
inherently curved, Riemannian nature enforces any learning
algorithm to respect the underlying geometry of covariance
matrices, i.e. Symmetric Positive Definiteness (SPD). A neural
architecture, first developed in 2017 by Huang and Van Gool
(2017), allows to train on SPD matrices: the SPD neural net-
work (SPDNet). Its application to micro-Doppler classification
was initiated in Yang et al. (2010), Brigant et al. (2016),
Brooks et al. (2019a), and Brooks et al. (2019b).

A rather more intuitive approach for micro-Doppler classifi-
cation, developed in former literature (Brooks et al. 2018)), in-
volves deep neural models on time-frequency representations,
specifically a Fully-Temporal Convolutional Network (FTCN).
A complex-valued version, suited to the radar application, was
then proposed in Brooks et al. (2019c). An extended version,
introducing a Fourier convolutional layer, which allows for the
learning of a 1-D filter bank initialized with the Fourier atoms,
was further introduced in Brooks et al. (2019d).

B. Full pipeline for temporal classification

We now introduce the proposed pipeline, displayed in
and show how branching through the its blocks leads
to different models on the signal representations. Four global
models, noted from (1) to (4) in the figure, can be extracted
from the pipeline, which we detail throughout the section.
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Fig. 2. Illustration of the global pipeline proposed for the classification
of time-frequency signals.

The classification in the FTCN uses Global Average Pooling
(GAP) to pool the feature maps’ temporal evolution to a single
dimension. However, as mentioned before it is possible to
branch out in the pipeline at any stage, precisely thanks to
the fully-temporal property of the network. It is precisely
the property of conservation of temporal structure verified by
the FTCN which allows to extract temporal feature maps,
and thus, gives the possibility to study the covariance of
these maps. Doing so hints towards a powerful representation
learning model, making use both of a potentially complex-
valued Euclidean FTCN operating on first-order moments of
the data, and a Riemannian SPDNet operating on second-
order moments of the data. We thus call this particular model
the Second-Order Fully Temporal Network (SOFTNet), and

illustrate it in

III. ADVANCES IN SPD NEURAL NETWORKS

The use of covariance representation is particularly inter-
esting in the case of structured temporal data since a global
covariance matrix is a straightforward way to capture and
represent the temporal fluctuations of data points of different

Fig. 3. Illustration of the SOFTNet.
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Fig. 4. Illustration of the DAMNet architecture. When the reference point
of the Euclidean mapping is the identity matrix, it reduces to the SPDNet
architecture.

lengths. Throughout this section, we propose building new
blocks upon the reference architecture (Huang and Van Gool
2017), with a shared goal of normalizing its inner mechanics.

A. DAMNet

In our first proposition, we introduce a new architecture,
called a Data-Aware Mapping Network (DAMNet), which fo-
cuses on the final layer of the SPDNet, the Euclidean mapping:
we argue that a better projection can be done by making the
layer dependent on the data. The original projection layer re-
lies on the Log-Euclidean Metric (LEM) framework (Arsigny
et al. [2006)), which endows the manifold of SPD matrices with
a Lie group structure. This framework is much simpler than
the full Riemanian setting and allows efficient computations
while keeping good theoretical properties (Pennec et al. 2000).
While useful, this framework is only a particular case: we thus
introduce an improved projection layer working in the broader
Riemaniann setting. This new projection maps the points to
the tangent space of some reference matrix and comes in
two variants: a barycentric projection, called BarNorm, which
uses the Riemannian barycenter as the reference matrix; and a
parametric projection, called ParNorm, which uses a parameter
SPD matrix, learnt during training.

In short, the difference between a SPDNet and a DAMNet
is the Euclidean mapping, which in the case of the former
is fixed to the matrix logarithm, contrary to the latter which
depends on a data-aware reference point M, defined either as
an additional parameter or a barycenter; as such; SPDNet is

a special case of DAMNet, as illustrated in and
in

X®) = jog(M~2PW M%) | with

1d — LogEig with no regularization

ey
M =< Bpatch — BarNorm (barycenter)
G € S} — ParNorm (gradient descent)
B. SPDNetBN

This section’s second main contribution is inspired by the
well-known and well-used BatchNorm layer, introduced in
the context of (Euclidean) CNNs for Computer Vision tasks
in Ioffe and Szegedy (2015). The overall architecture, which

we call Batch-Normalized SPD Neural Network (SPDNetBN),
is expected to perform better than either the SPDNet or
DAMNet.

The Euclidean BatchNorm involves centering and biasing
the batch B, which is done via subtraction and addition. How-
ever on a curved manifold, there is no such group structure
in general, so these seemingly basic operations are ill-defined.
To shift SPD matrices around their mean & or towards a bias
parameter G € S;F, we propose to rather use parallel transport
on the manifold (Amari 2016)):

Centering from & = Bary(5):

Vi< N, Pi=Te_,(P,)=6"2 P& ()
Biasing towards parameter G:
Vi< N, P,=T;,¢(P)=G? P, G? (2b)

We can now write our full Riemannian BatchNorm in [I]

Algorithm 1 Riemannian batch normalization on S, training
and testing phase

TRAINING PHASE
Require: batch of N SPD matrices {P;};<y, running mean &g, bias
G, momentum 7 -
: O — Bary({PZ}ZSN)
Bs + Bary"(8s,65)
for 7 < N do
Py Togor, ()
P« Tr,na(P)
end for ~
: return normalized batch {P;};<n

/I compute batch mean
// update running mean

/I center batch
// bias batch

ND e

INFERENCE PHASE
Require: batch of N SPD matrices {P;};<, final running mean &g,
learnt bias G a

: for i < N do
Py Teogr1,(F;)

1

2 /I center batch using set statistics
3: Pi < Fjdﬁg(Pi)

4

5

/I bias batch using learnt parameter
: end for -
: return normalized batch {P;};<n

C. Riemannian manifold-constrained optimization

The specificities of a the proposed DAMNet architecture
and BatchNorm algorithm are the non-linear manipulation of
manifold values in both inputs and parameters and the use of a
Riemannian barycenter. We refer the reader to Edelman et al.
(1998)), Tonescu et al. (2015), Engin et al. (2018)), and Brooks
et al. (2019a) for the inner mechanics of the backpropagation
of manifold-constrained structured matrix functions through a
Riemannian neural network.

The bias parameter matrix G of the Riemannian BatchNorm
is by construction constrained to the SPD manifold. However,
the standard Stochastic Gradient Descent (SGD) has no reason
to respect this constraint; instead, a Riemannian SGD is
implemented, as detailed in Edelman et al. [199§] illustrated

in In short, it consists in a two-step process of
tangential projection II7 and exponential mapping Expg:
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Fig. 5. Illustration of manifold-constrained gradient update. The Eu-
clidean gradient is projected to the tangent space, then mapped to the manifold
through retraction, which can be the exponential mapping.

P+ PT

VP, I7¢(P) = GTG cTagcSTt (3)

VP € Tg, Expg(P) = G2 log(G 2 PG™2)G? € SF  (4)

However, this is still not enough for the optimization of the
layer, as the BatchNorm involves not simply G and &, but
G3 and QS*%, which are structured matrix functions of G, i.e.
which act non-linearly on the matrices’ eigenvalues without
affecting its associated eigenspace. The next paragraph deals
with the backpropagation through such functions.

We summarize the backpropagation formulas as such: given
the function P —— X := ¢g(P) and the succeeding gradient

6,;(;1;1)’ the output gradient 851(:) is:
oL® OL*k+1)
- L T = T
5P U( © (U ( X U))U (5)
9(177:)—9(%') if o, 75 o
Lij = { N ! (6)
g'(0;) otherwise

D. Convolution for covariance time series

Here we introduce a novel temporal convolution layer for
time series of SPD matrices, inspired from the usual Euclidean
ID convolution layer, and using the BiMap layer defined
above. This layer produced no satisfactory results, so does
not appear in the experimental validations.

The convolution as defined above takes the form of an arith-
metic mean; one could instead imagine using a Riemannian
mean, better-suited to the SPD data:

X =Px"K

w (7N
vt <T,, X; =Baryj’y (K Prr—1-1 K))

In the equation above, one must take care not to confuse the
weighted Fréchet mean of the operands with the unweighted
Fréchet mean of the weighted operands.

illustrates the somewhat convoluted process of
performing the SPD BiMap convolution.
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Fig. 6. The convolutional BiMap.

More realistically, we wish to instigate the network’s po-
tential expressiveness by further building multi-channeled SPD
representations. We do so in the usual fashion; input P is now
of shape (T, C;, n;, n;), kernel K of shape (C,, C;, k,n;,n,),
weights w are still of shape (k,), and output X of shape
(T,,Cs,m0,m0), and is computed as follows:

Veo < Coy Xey = Y Po, %Ko, ®)
¢i<C;
In all definitions above, the convolution uses the BiMap
layer (and therefore induces dimension reduction), which is
novel.

IV. EXPERIMENTAL RESULTS

Here we evaluate the performances of the different proposed
architectures on micro-Doppler radar data classification, along
with baseline reference algorithms.

A. Drones recognition task

Experiments are conducted on a confidential dataset of
real recordings issued from a NATO working group ﬂ To
spur reproducibility, we also experiment on synthetic, publicly
available data.

The raw micro-Doppler signal is split in windows of length
n = 20, the series of which a single covariance matrix of
size 20 x 20 is sampled from, which represents one radar
data point. We refer to for a visual clarification of
the splitting operation. The NATO data features 10 classes
of drones, whereas the synthetic data is generated by a
realistic simulator of 3 different classes of drones following
the protocol previously described.

'We would like to thank the NATO working group SET245 for providing
the drone micro-Doppler database and allowing for publication of classifica-
tion results.
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TABLE I
PERFORMANCE COMPARISON OF FIRST- AND SECOND-ORDER MODELS ON
RADAR DATA

Train size 100% 20% 5%

SPDNet 92.6 £0.54 91.5+£0.74 88.4+3.06
HPDNet 94.4+0.76 91.8+£0.80 87.1+1.11
FTCN 98.9+0.44 93.4+1.21 84.3+251
FourierNet 99.4+0.17 96.24+1.12 87.44+1.94
SpectroSPD | 95.1£0.49 91.9+0.82 84.6+ 3.49
SOFTNet 99.5+0.16 97.2+£0.90 93.9+0.74

B. Comparison with second-order models and validation of
the full pipeline

The same windowing is used for covariance and spectral
representations to keep comparisons fair, as per illustrated
in We bifurcate the introduced pipeline at various
stages in various configurations, which amounts to different
learning models which we relate to in Furthermore,
we repeat the experiments with decreasing amount of training
data in the hope that injecting geometric information in the
learning through second-order modelling would compensate
for lack in data volume. Results are displayed in

The key takeaway from these results follows: Riemannian
SPD-based models don’t compete against Euclidean deep
models when data is plentiful. However, the exhibit strong ro-
bustness to the lack of data, outperforming the latter in scarcity
scenarios. The full SOFTNet pipeline exhibits complimentary
behaviours, yielding competitive performance throughout all
situations.

reports the average accuracies and variances of the
proposed DAMNet and SPDNetBN architectures, compared
with the original SPDNet. We observe from these results a
strong gain in performance on the SPDNetBN and DAMNet
over the SPDNet and over the small FTCN, which validates
the usage of the Riemannian BatchNorm along with the ex-
ploitation of the geometric structure underlying the data. All in
all, we reach better performance with much fewer parameters,
which again is a key feature for radar classification, and much

others.
TABLE II
PERFORMANCE OF SPDNET, DAMNET AND SPDNETBN ON THE NATO
DATASET
Model SPDNet DAMNet SPDNetBN
Normalization - BarNorm ParNorm BatchNorm
Accuracy 72.6% +£0.61 79.9% +1.19 80.3% £ 0.55 82.3% =+ 0.80
Acc. (10% data) | 69.1% +0.97 73.8% +0.25 70.2% £+ 1.74 77.7% £ 0.95

The raw SPDNet, though not competing with the FTCN
when all data is available, remains more robust to the lack
data. The SPDNetBN on the other hand, exhibits a strong
gain in performance to the point of competing with the deep
model.

For the sake of expression, we also show in a
confusion matrix of the SPDNetBN model for the NATO
dataset.
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Fig. 8. Confusion matrix on the NATO dataset.

As stated previously, it is of great interest to consider the
robustness of learning algorithms when faced with a critically
low amount of data. The previous results show that when
given only 10% of available training data, the SPD-based
models remain highly robust to the lack of data while the
FTCN plummet. Further, we study robustness on synthetic
data, artificially varying the amount of training data while
comparing performance over the same test set. As the simula-
tor is unbounded on potential training data, we also increase
the initial training set up to double its original size. Results

are reported in
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Fig. 9. Performance of all models in function of the amount of synthetic
radar data.



V. CONCLUSION

The primary goal of this work was finding learning models,
with the internal structure naturally suited to the input data.
Two main classes of representations were considered in ad-
dition to the raw time series: a time-frequency spectrogram,
i.e. some form of Fourier transform, and a covariance matrix,
which respectively yield Euclidean, convolution-based, and
Riemannian, geometry-based, neural models. We also provided
a congregating solution to the signal’s representation multi-
plicity, by making use of all representations and models in a
single pipeline, called SOFTNet.

We can conclude from the experiments that the SPDNetBN
both exhibits higher robustness to lack of data and performs
much better than the Euclidean deep methods with much
fewer parameters. When the available training data allowed
skyrockets, we do observe that the FTCN comes back to par
with the SPDNetBN to the point of outperforming it by a small
margin in the extremal scenario; in the meantime, the SPDNet
lags behind by a large margin to the SPDNetBN, which thus
seems to benefit strongly from the normalization.
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