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Abstract

The need of interpreting Deep Learning (DL) mod-
els has led, during the past years, to a proliferation
of works concerned by this issue. Among strategies
which aim at shedding some light on how information
is represented internally in DL models, one consists in
extracting symbolic rule-based machines from connec-
tionist models that are supposed to approximate well
their behavior. In order to better understand how rea-
sonable these approximation strategies are, we need
to know the computational complexity of measuring
the quality of approximation. In this article, we ad-
dress this issue from a computational viewpoint for the
case of Finite State Machines (FSMs) with Recurrent
Language Models trained as Language models(RNN-
LM). More precisely, we’ll show the following: (a) For
general RNN-LMs with a single hidden layer and a
ReLu activation function: - The equivalence problem of
a probabilistic deterministic finite automata (PDFA),
probabilistic finite automata(PFA) and weighted finite
automata (WFA) with a first-order RNN-LM is unde-
cidable; - As a corollary, the distance problem between
languages generated by PDFA/PFA/WFA and that of
a RNN-LM is not recursive; -The intersection between
a DFA and the cut language of an RNN-LM is un-
decidable; - The equivalence of a PDFA/PFA/WFA
and RNN-LM in a finite support is EXP-Hard; (b)
For consistent weight RNN-LMs with any computable
activation function: - The Tchebychev distance ap-
proximation with PFAs -equivalently, Hidden Markov
Models- is decidable; - The finite support version of the
problem is at least NP-Hard. Our reduction technique
from 3-SAT makes this latter fact easily generalizable
to other RNN architectures (e.g. LSTMs/GRUs), and
even RNNs with finite precision.

Mots-clef : Recurrent Neural Networks, Finite State
Machines, Distances, Equivalence.

1 Introduction
Recurrent Neural Networks and their different vari-
ants represent an important family of Deep Learning
models suitable to learning tasks with sequential
data. However, just like all Deep Learning models
in general, this class of models lacks interpretability,
restricting its deployment in systems where security
and transparency matters are of utmost importance.
To tackle this issue, two major paradigms are generally
explored in the literature: The first consists at raising
the problem of interpretability early on the design
phase of DL architectures [36][25], at the price of
losing flexibility of these newly designed transparent
architectures. A second family of techniques raises
the issue of interpretability in an ad-hoc manner, by
designing algorithmic and visualisation tools [15] to
conduct interpretative analysis of already trained DL
models.
Among possible ad-hoc strategies, one consists at
extracting transparent rule-based machines from a DL
trained model. the challenge is then how to convert the
continuous representation of information as encoded
in DL models into symbolic representations, while
maintaining a good quality of prediction of these last
structures.
In this work, we aim at highlighting the problem of
how well finite-state models can approximate a RNN
trained as language models 1 from a computational
viewpoint. This problem in turn requires solving
essential computational problems: can we compute

1We note that in language learning tasks, RNN can be trained
in two ways: RNN as acceptors/classifiers [33] or RNN as lan-
guage models [22]. In this article, our main focus will be on the
second case.
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distances between these language models? Can we
decide the equivalence? These questions have received
answers for PFAs [8,10,19]. We aim in this work to ex-
tend these results by including RNN language models
into the picture. The class of RNNs considered in this
paper are first-order RNNs with a ReLu activation
function. The case of general activation functions
will be discussed in the last section of the article
where we give a lower bound complexity class of the
approximate equivalence problem between RNN-LMs
with any activation function and PFAs.

Our main results are stated as follows: (a) For
general first-order RNN-LMs with ReLu activa-
tion function: 1. The equivalence problem of a
PDFA/PFA/WFA and a first-order RNN-LM is
undecidable; 2- As a corollary, any distance metric
between languages modeled by PDFA/PFA/WFA and
that of a RNN-LM is not recursive; -The intersection
between a DFA and the cut-point language[27] of
a RNN-LM is undecidable; - The equivalence of a
PDFA/PFA/WFA and RNN-LM in a finite support is
EXP-Hard; (b) For consistent first-order RNN-LMs
with any computable activation function: - The
Tchebychev distance approximation is decidable; -
The Tchebychev distance approximation in a finite
support is NP-Hard.

The rest of this article is organised as follows. Sec-
tion 2 gives a concise literature overview of issues re-
lated to our problematic. Section 3 presents our re-
sults for the case of general first-order RNN language
models(RNN-LM) with ReLu activation function. Sec-
tion 4 is dedicated to the case of consistent RNN-LMs.

2 Related works
The problem of symbolic knowledge extraction from
connectionist models is not a new issue, and one
can trace back works interested in this problem
since the development of the first neural architec-
tures [23][20]. However, with the development of novel
spatio-temporal connectionist models in the nineties,
the most important of which is Ellman RNNs[11],
and their great empirical success on inferring language
models with limited amount of data and with perfor-
mance results that often outscore rule-based algorithms
traditionally used in the Grammatical Inference field
[9], research interests in this issue has regained more
attention. In fact, these works were mostly driven by
a legitimate motivation: if an RNN-like structure is
trained to recognise a language belonging to a given
class of languages C, and this latter can be recognised

by a class of computing devices M, then there must be
a close connection between the representation of the
target language as encoded in the RNN-like structure
on one hand, and that of the corresponding computing
device in M that is capable of recognising it on the
other.
This aforementioned motivation raises two fundamen-
tal questions, at least from a theoretical viewpoint:

1. What is the expressive power of different classes of
“RNN Machines”, as compared to classical symbolic
machines (e.g. deterministic/non deterministic fi-
nite state automata, deterministic/non determinstic
pushdown automata, Turing machines etc.)?

2. How can we design algorithms that extract sym-
bolic machines from RNN models? What are the
theoretical guarantees of such methods? What is
the computational complexity of such problems?

We should note that these two questions are, in some
sense, interrelated. If a class of RNNs is very pow-
erful –say Turing Equivalent– computational problems
related to the extraction of finite state machines are
more likely to be undecidable. In fact, as a corol-
lary of Rice’s Theorem2, the equivalence between a
Turing machine and any non-trivial class of comput-
ing devices is necessarily undecidable, which means in
practice that no algorithm can exist that can answer
the question of equivalence between symbolic machines
and “Turing- Equivalent” RNN ones. In other words,
from the perspective of the theory of computation, the
trade-off between expressiveness and interpretability3

in connectionist models is unavoidable. As a conse-
quence of the above discussion, we argue that analyz-
ing a class of RNNs as a computational model can give
many insights with regard to its interpretability.
Guided by questions raised above, we divide the rest
of this section into two parts: In the first part, we ex-
amine works present in the literature that focused on
the computational power of recurrent neural networks
and its consequences on some computational problems
concerning RNNs. In the second part, we give a brief
overview of existing methods in the literature aimed
at extracting finite state machines from trained RNN
ones.

2The Rice Theorem states that any class of non-trivial lan-
guages recognised by a Turing machine is not recursive

3In our context, we quantify the interpretability of a model
as a measure of the computational difficulty by which one can
extract a finite state machine. A more rigorous formal defini-
tion of what is an intepretable model is still an arguably open
question.
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2.1 Computational power of RNNs

The question of the computational capabilities of differ-
ent classes of RNN has been addressed since the early
development of neural systems. To the best of the
author’s knowledge, early works that addressed this
dates back to the middle of the previous century by
Kleene [17], where it was proven that networks with
binary threshold activation functions are capable of
implementing finite state automata. In [26], Pollack
designed a Turing-complete class of high-order recur-
rent neural networks with two types of activation func-
tion (linear and Heaviside). This result was later ex-
tended in [29], where authors relaxed the high-order
requirement, and showed that first-order RNNs with
saturated-linear activation functions were Turing Com-
plete. Later on, Kilian et al. generalised this result to
sigmoidal activation functions [16].

The Turing Completeness of some classes of RNNs
has many consequences with respect to the computa-
tional class to which belong many problems related to
them. In [7], the authors proved that the problem of
deciding whether a RNN language model -RNN-LM-
with ReLu activation function is consistent (encodes a
valid probability distribution) or not is an undecidable
problem. Moreover, the consensus string problem and
finding a minimal RNN-LM equivalent to a given RNN-
LM or testing the equivalence between two RNN-LMs
are also undecidable.

Given these pessimistic results about computability
of several important problems related to RNNs, a new
line of research suggests to analyze the practical ca-
pabilities computational power of neural nets instead
of the classical “unrealistic” theoretical model, by con-
straining the amount of memory resources of the RNN
hidden units to be finite [34][21]. Under this constraint,
Korskky et al. [18] proved that RNNs with one hidden
layer and ReLu activation, and GRUs are expressively
equivalent to deterministic finite automata. In [34],
Weiss et al. showed that the class of finite precision
LSTMs were able to simulate counter machines, while
the simple class of Elman RNNs and GRUs can’t.

2.2 Extraction of automata-based ma-
chines from trained RNNs

Early works investigating the problem of extracting
automata-based machines from trained RNNs coincide
with the emergence of novel RNN architectures [11][12]
in early nineteens that have shown promising results
for the task of inferring language models from limited
data. These early works have mainly focused on the

extraction of deterministic finite automata (DFAs)
from RNNs trained to recognise regular languages,
and most of which were based on the assumption that
a well-trained RNN to recognise a regular language
tend to group hidden states of the RNN into clusters
that maps directly to states of the minimal DFA
recognising the target regular language. Based on
this assumption, the problem of DFA extraction from
RNNs boils down to a clustering/quantization problem
of the RNN’s hidden state space, and many clustering
techniques were proposed for this task: Quantization
by Equipartition [13][32], Hierarchical Clustering [1],
k-means [35][28], fuzzy clustering [6] etc.
During the last few years, as RNN-based architectures
became more sophisticated and thus harder to be a
subject of interpretative analysis, the issue has gained
an increasing interest among researchers, and new
methods were proposed in the literature to extract
automata-based machines from modern classes of
RNNs, such as LSTM/GRUs. In [33], Weiss et al.
proposed an adaptation of the L∗ algorithm [2] to
extract deterministic finite automata (DFA) from
RNN Acceptors (LSTMs/GRUs), where an RNN
Acceptor model serves as a black box oracle for
approximate equivalence and membership queries,
hinting that the exact equivalence query is “likely
to be intractable”. The same authors extended their
work in [33] to extract Probabilistic Deterministic
Finite Automata from RNN-LMs. In order to answer
equivalence queries, authors used a sampling strategy
of both models, and gave theoretical guarantees of its
convergence in probability under a relaxed notion of
equivalence. Ayache et al. [3] employed the spectral
learning framework [4] to extract Weighted Finite
Automata (WFA) from a RNN language model. In
[24], Okudono et al. raised the problem of answering
the equivalence query between a RNN language model
and a WFA proposing an empirical regression-based
technique to perform this task. However, no theoreti-
cal guarantees were provided to back their method.

Many methods mentioned theoreof rely on the
equivalence query oracle as an internal component in
the algorithmic design. Our work aims at shedding
light on the computational difficulty of designing
such oracle. The problem of deciding the equivalence
between finite state machines and non-trivial class of
RNNs is believed to be intractable [34]. In this work,
we’ll give a formal proof that the equivalence problem
is indeed undecidable even in the case of simple
first-order RNNs with ReLu activation function with
different weighted finite state machines. Facing this
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negative result, we address the question of whether
approximate equivalence in the sense of Tchebychev
distance is tractable when the trained RNN-LM is
guaranteed to be consistent. We prove that the
approximate equivalence problem is decidable, and
show that the lower bound complexity class on this
problem with general activation functions is NP-Hard.
We argued that this lower bound complexity result
holds also for other architectures of interest, such as
LSTM/GRUs.

3 Definitions and Notations
Let Σ be a finite alphabet. The set of all finite strings
is denoted by Σ∗. The set of all strings whose size is
equal (resp. greater than or equal) to n is denoted by
Σn(resp. Σ≥n). For any string w ∈ Σ∗, the size of w is
denoted by |w|, and its n-th symbol by wn. The prefix
of length n for any string w ∈ Σ≥n will be referred to
as w:n. The symbol $ denotes a special marker. The
symbol Σ$ will refer to the set Σ

⋃
{$}.

Weighted languages: A weighted language f over
Σ is a mapping that assigns to each word w ∈ Σ∗ a
weight f(w) ∈ R. A WL f is called consistent, if
it encodes a valid probability distribution, i.e. sat-
isfies the following properties: ∀w ∈ Σ∗ : f(w) ≥
0,

∑
w∈Σ∗

f(w) = 1. Two WLs f1, f2 are said to

be equivalent if: ∀w ∈ Σ∗ : f1(w) = f2(w). The
Tchebychev distance metric between two WLs is de-
noted d∞(f1, f2), and defined as: max

w∈Σ∗
|f1(w)−f2(w)|.

Finally, we define, for a given scalar c > 0, the cut-
point language of f with respect to c and denoted Lf,c,
as the set of finite words whose values are greater or
equal to c.

In Section 4, a 3-SAT formula will be denoted by the
symbol Ψ. A formula is comprised of n Boolean vari-
ables denoted x1, ..xn, and k clauses C1, ..Ck. For each
clause, we’ll use notation li1, li2, li3 to refer to its three
composing literals. For a given string w ∈ {0, 1}n, the
number of clauses satisfied by w will be denoted by
Nw.

For the rest of this section, we shall provide a for-
mal definition of the class of first-order RNN-LMs that
we’ll study in this work, and basic definitions of dif-
ferent automata-based machines that we’ll encounter
throughout the rest of this article.

Definition 3.1. [7] A First-order RNN Language
model is a weighted language R : Σ∗ → R and is de-
fined by the tuple < Σ, N, h(0), σ,W, (W ′)Σ$

, E,E′ >
such that:
• Σ is the input alphabet,

• N the number of hidden neurons,
• h(0) ∈ QN is the initial state vector,
• f : Q→ Q is a computable activation function,
• W ∈ QN×N is the transition matrix,
• {W ′σ}σ∈Σ$

, where each W ′σ ∈ QN is the embedding
vector of the symbol σ ∈ Σ$,

• O ∈ QΣ$×N is the output matrix,
• O′ ∈ QΣ$ the output bias vector.
The computation of the weight of a given string w by
R is given as follows. (a) Recurrence equations:

h(t+1) = f(W.h(t) +W ′wt
)

Et+1 = Oh(t+1) +O′

E′t+1 = softmax2(Et+1)

(b) The resulting weight:

R(w) =

|w|+1∏
i=0

E′i

where w0 = w|w|+1 = $

Remark that, in order to avoid uncomputabil-
ity issues, we used softmax base 2 defined as:
softmax2(x)i = 2xi

n∑
j=1

2xj
for any x ∈ Rd instead of

the standard softmax in the previous definition. In
the following, hidden units of the network will be
designated by lowercase letters n1, n2, .., and their
activations at time t by htn. Also, we denote by Rf the
class of RNN-LMs when f is the activation function.
For example, an important class of RNN-LMs that
will be used extensively in the rest of the article is
RReLu.

Weighted Finite Automata (WFA). WFAs
represent weighted versions of nondeterministic finite
automata, where transitions between states, denoted
δ(q, σ, q′) where q, q′ ∈ Q represents states of the WFA
are labelled with a rational weight T (q, σ, q′), and
each of its nodes q ∈ Q is labelled by a pair of rational
numbers (I(q), P (q)) that represents respectively the
initial-state and final-state weight of q. WFAs model
weighted languages where the weight of a string w is
equal to the sum of the weights of all paths whose
transitions encode the string w. The weight of a path
p is calculated as the product of the weight labels
of all its transitions, multiplied by the initial-state
weight of its staring node and the final-state weight of
its ending node.

Probabilistic Finite Automata (PFA). A PFA
is a WFA with two additional constraints: First, the
sum of initial-state weights of all states is a valid
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probability distribution over the state space. Second,
for each state, the sum of weights of its outcoming
edges added to its finite-state weight is equal to 1. This
additional constraint restricts the power of PFAs to
encode stochastic languages [30], which makes it useful
for representing language models. Interestingly, PFAs
are proven to be equivalent to Hidden Markov Models
(HMMs), and the construction of equivalent HMMs
from PFAs and vice versa can be done in polynomial
time[31]. The deterministic version of PFAs, a.k.a
Deterministic Probabilistic Finite Automata (DPFA),
enforces the additional constraint that for any state q,
and for any symbol σ there is at most one outgoing
transition labelled by σ from q. We note that there is
a strict inclusion in terms of expressive power between
PDFA, PFA and WFAs [31].

4 Computational results for
general RNN-LMs with ReLu
activation functions

The choice of ReLu in this part of the article is not
arbitrary. In fact, due to its nice piecewise-linear prop-
erty and its wide use in practice, the ReLu(.) function
is first choice to analyze theoretical properties of RNN
architectures. Analyzing the case of RNNs with highly
non-linear activation functions (e.g. the sigmoid, the
hyperbolic tangent etc.), is left for future research.

4.1 Turing Completeness of RNNs with
ReLu: Siegelmann’s construction

The basic building block for proving computational re-
sults presented in this part of the article is the work
done by Siegelmann and al. in [29] to prove the Tur-
ing completeness of a certain class of first-order RNNs.
Hence, we propose, in this section, to provide a global
scope of this construction, followed by an equivalent
reformulation of their main theorem that will be rele-
vant for our work.
The main intuition of Siegelmann et al.’s work is that,
with an appropriate encoding of binary strings, a first-
order RNN with a saturated linear function can read-
ily simulate a stack data structure by making use of
a single hidden unit. For this, they used 4-base en-
coding scheme that represents a binary string w as a

rational number: Enc(w) =
|w|∑
i=1

wi

4i . Backed by this

result, they proved than any two-stack machine can
be simulated by a first-order RNN with linear satu-
rated function, where the configuration of a running

two-stack machine (i.e. the content of the stacks and
the state of the control unit) is stored in the hidden
units of the constructed RNN. Finally, given that any
Turing Machine can be converted into an equivalent
two-stack machine (The set of two-stack machines is
Turing-complete [14]), they concluded their result.
In the context of our work, two additional remarks
need to be noted about Siegelmann’s construction: -
First, although the class of first-order RNNs examined
in their work uses the saturated linear function as an
activation function, as raised in [7], their result is gen-
eralizable to the ReLu activation function (or, more
generally, any computable function that is linear in the
support [0,1])? - Second, although not mentioned in
their work, the construction of the RNN from a Turing
Machine is polynomial in time. In fact, on one hand,
the number of hidden units of the constructed RNN is
linear in the size of the Turing Machine, and the con-
struction of transition matrices of the network is also
linear in time. On the other hand, notice that the 4-
base encoding map Enc(.) is also computable in linear
time.
In light of these remarks, we are now ready to present
the following theorem:

Theorem 4.1. (Theorem 2, [29]) Let φ : {0, 1}∗ →
{0, 1}∗ be any computable function, and M be a
Turing Machine that implements it. We have,
for any binary string w, there exists N =
O(poly(|M |)), h(0) = [Enc(w) 0..0] ∈ QN , W ∈
QN×N , such that for any finite alphabet Σ, ∀σ ∈
Σ$ : W ′σ ∈ QN , O ∈ Q|Σ$|×N , O′ ∈ Q|Σ$|, R =<
Σ, N,ReLu,W,W ′, O,O′ >∈ RReLu verifies:
• if φ(w) is defined, then there exists T ∈ N such that

the first element of the hidden vector hT is equal to
Enc(φ(w)), and the second element is equal to 1,

• if φ(w) is undefined (i.e. M never halts on w), then
for all t ∈ N, the second element of the hidden vector
ht is always equal to zero.

Moreover, the construction of h0 and W is polynomial
in |M | and |w|.

In the following, we’ll denote by RM,w
ReLu the set of

RNNs in RReLu that simulate the TM M on w. It is
important to note that the construction of a RNN that
simulates a TM on a given string in the previous the-
orem is both input and output independent. The only
constraints that are enforced by the construction are
placed on a block of the transition matrix of the net-
work, and the initial state. In fact, the input string is
placed in the first stack of the two-stack machine before
running the computation (i.e. in the initial state h(0)).
Under this construction, the first stack of the machine
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is encoded in the first hidden unit of the network. Af-
terwards, the RNN Machine runs on the empty string,
and halts (If It ever halts) when the halting state of the
machine is reached. In theorem 1.1, the halting state
of the machine is represented by the second neuron of
the network. In the rest of the article, we’ll refer to
the neuron associated to the halting state by the name
halting neuron, denoted nhalt.
We present the following corollary that gives a charac-
terization of the halting machine problem4 that relates
it to the class RReLu:

Corollary 4.2. Let M be any Turing Machine, and w
be a binary string, M halts on w if and only if for any
R ∈ RM,w

Relu , there exists T ∈ N, such that ∀t < T :

h
(t)
nhalt = 0, and h

(T )
nhalt = 1.

4.2 The equivalence problem between
FSAs and general RNNs

The equivalence problem between a DPFA and a gen-
eral RNN-LMs is formulated as follows:
Problem. Equivalence Problem between a DPFA and
a general RNN
Given a general RNN-LM R ∈ RReLu and a DPFA A.
Are they equivalent?

Theorem 4.3. The equivalence problem between a
DPFA and a general RNN is undecidable

Proof. We’ll reduce the halting Turing Machine prob-
lem to the Equivalence problem. Let Σ = {a}. We first
define the trivial DPFA A with one single state q0, and
T (δq0,a,q0) = P (q0) = 1

2 , I(q0) = 1. This DPFA imple-
ments the weighted language f(an) = 1

2n+1 .
Let M be a Turing Machine and w ∈ Σ∗. We construct
R ∈ RM,w

ReLu such that O[nhalt, a] = 1 ,0 everywhere and
O′ is equal to zero everywhere. We build another RNN
R′ from R by adding one neuron in its hidden layer,

denoted n′ such that: h
(0)
n′ = 0, ∀t ≥ 0 : h

(t+1)
n′ =

ReLu(h
(t)
n′ ), O[n′, $] = 1.

Notice that, by Corollary 4.2, the TM M never halts

on w if and only if ∀T : (h
(T )
nhalt , h

(T )
n′ ) = (0, 0), i.e.

R′(an) = 1
2n+1 . That is, the TM M doesn’t halt on w

if and only if the DPFA A is equivalent to R′, which
completes the proof.

A direct consequence of the above theorem is that
the equivalence problem between PFAs/WFAs and
general RNN-LMs in RReLu is also undecidable, since

4The Halting Machine problem is defined as follows: Given
a TM M and a string w, does M halt on w? This problem is
undecidable.

the DPFA problem case is immediately reduced to the
general case of PFAs (or WFAs). Another important
consequence is that no distance metric can be com-
puted between DPFA/PFA/WFA and RReLu:

Corollary 4.4. Let Σ = {a}. For any distance metric
d of Σ∗, the total function that takes as input a de-
scription of a PDFA A and a general RNN-LM RReLu
and outputs d(A, R) is not recursive.
This fact is also true for PFAs and WFAs.

Proof. The proof relies on the properties of distance
metrics.

4.3 Intersection of the cut language of
a general RNN-LM with a DFA

In this subsection, we are interested in the following
problem:
Problem. Intersection of a DFA and the cut-point
language of a general RNN-LM
Given a general RNN-LM R ∈ RReLu, c ∈ Q, and a
DFA A, is LR,c

⋂
LA = ∅? Before proving that this

problem is undecidable, we shall recall first a result
proved in [7]:

Theorem 4.5. (Theorem 9, [7]) Define the highest-
weighted string problem as follows: Given a RNN-LM
R ∈ RReLu, and c ∈ (0, 1): Does there exist a string w
such that R(w) > c?
The highest-weighted string problem is undecidable.

Corollary 4.6. The intersection problem of a DFA
and the cut-point language of a general RNN-LM is
undecidable.

Proof. We shall reduce the highest-weighted string
problem from the intersection problem. Let R ∈
RReLu a general weighted RNN-LM, and c ∈ (0, 1).
Construct the automaton A that recognizes Σ∗. We
have that LA

⋂
LR = LR = ∅ if and only if there exist

no string w such that R(w) > c, which completes the
proof.

4.4 The equivalence problem over finite
support

Given that the equivalence problem between a gen-
eral RNN-LM and different classes of finite state au-
tomata is undecidable, a less ambitious goal is to decide
whether a RNN-LM agrees with a finite state automa-
ton over a finite support. We formalize this problem
as follows:
Problem. The EQ-Finite problem between PDFA and
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general RNN-LMs
Given a general RNN-LM R ∈ RReLu, m ∈ N and a
PDFA A. Is R equivalent to A over Σ≤m?

Theorem 4.7. The EQ-Finite problem is EXP-Hard.

Proof. We reduce the bounded halting problem 5 to
the EQ-Finite problem.
The proof is similar to the used for Theorem 4.3. We
are given a TM M , a string w and m ∈ N. Let Σ = {a}.
We construct a general RNN-LM R′ by augmenting
R ∈ RM,w

ReLu with a neuron n′ as in Theorem 4.3. By
Theorem 4.1, this reduction runs in polynomial time.
On the other hand, let A be the trivial PDFA with one
single state q0, and T (δq0,a,q0) = P (q0) = 1

2 , I(q0) = 1.
Note that R′ doesn’t halt in m steps if and only if

∀T ≤ m : (n
(T )
halt, n

′(T )) = (0, 0), i.e. R′(an) = 1
2n+1

for the first m running steps on R′, in which case the
language modelled by R′ is equal to f in Σ≤m. Hence,
A is equivalent to R in Σ≤m if and only if M doesn’t
halt on the string w in less or equal than m steps.

5 Computational results for con-
sistent RNN-LMs with gen-
eral activation functions

In the previous section, we have seen that problems
related to equivalence and distance in the general
case turned out to be either undecidable, or in-
tractable when restricted to finite support. In this
section, we examine the case where trained RNN-LMs
are guaranteed to be consistent6, and we raise the
question of approximate equivalence between PFAs
and first-order consistent RNN-LMs with general
computable activation functions. It’s worth noting
that all results holding here for PFAs remain valid
for Hidden Markov Models(HMM), since HMMs and
PFAs are proved to be equivalent and there exists
polynomial time algorithms to convert one to another
and vice versa (See Propositon 4-5, [31]). For any
computable activation function σ, we formalise this
question in the following two decision problems:

Problem. Approximating the Tchebychev distance
between RNN-LM and PFA

5The bounded halting problem is defined as follows: Given
a TM M, a string x and an integer m, encoded in binary form.
Decide if M halts on x in at most n steps? This problem is
EXP-Complete.

6It was proven until recently that RNN-LMs with ReLu acti-
vation function are not necessarly consistent, and deciding con-
sistency is undecidable[7]. Characterizing consistency of different
classes of RNN-LMs is still an open problem.

Instance: A consistent RNN-LM R ∈ Rσ, a PFA A,
c > 0
Question: Does there exist |w| ∈ Σ∗ such that
|R(w)−A(w)| > c

Problem. Approximating the Tchebychev distance be-
tween consistent RNN-LM and PFA over finite support
Instance: A consistent RNN R ∈ Rσ, a PFA A, c > 0
and N ∈ N+,
Question: Does there exist |w| ≤ N such that
|R(w)−A(w)| > c
Note that there is no constraint on the activation func-
tion used for consistent RNN-LMs in these defined
problems, provided it is computable. The first fact
is easy to prove:

Theorem 5.1. Approximating the Tcheybechev dis-
tance between RNN-LM and PFA is decidable.

Proof. Let R be a consistent RNN-LM and A be a
PFA. An algorithm that can decide this problem runs
as follows: enumerate all strings w1, ..wt, .. in Σ∗ until
we reach a string that satisfies this property in which
case the algorithm returns Yes. If there is no such
string, by definition of consistency, there will be a finite

time T 7 such that
T∑
t=1

R(wt) ≥ 1−c,
T∑
t=1
A(wt) ≥ 1−c

in which case, we have: ∀t > T : R(wt) < c and
A(wt) < c which implies ∀t > T : |R(wt −A(wt)| < c.
When T is reached, the algorithm returns No.

5.1 Approximating the Tcheybetchev
distance over a finite support

The rest of this section is dedicated to the proof
of NP-Hardness result. And, we’ll derive below the
construction of a PFA and a RNN from a given 3-SAT
formula which will help us prove the result. Without
loss of generality, we assume for the rest that literals
{li1, li2, li3} of a given clause Ci are arranged in the
order of atoms from which they derive, and we denote
by i∗Ci

the index of the atom of li1. Let ε ∈ (0, 1
2 )

whose value will be specified later.

• Construction of a PFA A: The construction
of our PFA is inspired from the work done in [5], and
illustrated in Figure 1. Intuitively, each clause i in Ψ is
represented by two paths in the PFA, one that encodes
a satisfiable assignment of the variables for this clause,

7T can be determined while running the algorithm through
summing the probabilities of all reached strings in the enumera-
tion
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and the other not. More formally, the PFA A is defined
as:

• QA = {q0} ∪ {qcij : i ∈ [1, k], j ∈ [1, n], c ∈ {T, F}}
is the set of states,

• Initial-state weights: IA(q0) = 1, 0 otherwise,
• Final-state weights:

– For each clause i: PA(qNin) = 1− 2ε
– All the other states in A has a final-state proba-

bility equal to 2ε

• Transitions: For each clause Ci,

• ∀S ∈ {T, F}, a ∈ Σ: (q0, a, q
S
i,1) = 1

2k −
ε
k

• If i∗Ci
6= 1:

– If li1 = xi∗Ci
:

∀S ∈ {T, F} : TA(qSi∗Ci
−1, 1, q

T
i∗Ci

) = 1
2 − ε and

TA(qSi∗Ci
−1, 0, q

F
i∗Ci

) = 1
2 − ε

– else: ∀S ∈ {T, F} : TA(qSi∗Ci
−1, 0, q

T
i∗Ci

) = 1
2 − ε

and TA(qSi∗Ci
−1, 1, q

F
i∗Ci

) = 1
2 − ε

– If i∗Ci
> 2, then:

∀1 ≤ i < i∗Ci
− 1, a ∈ Σ, S ∈ {T, F} :, we have:

TA(qSi , a, q
S
i+1) = 1

2 − ε
• Else:

– If li1 = x1: ∀a ∈ Σ : TA(qTi,1, a, q
T
i,2) = 1

2−ε. And:

∗ If x2 = li2: then TA(qFi1, 1, q
T
i2) = 1

2 − ε, and
TA(qFi1, 0, q

F
i2) = 1

2 − ε,
∗ If li2 = x̄2: then TA(qFi1, 0, q

T
i2) = 1

2 − ε, and
TA(qNi1 , 1, q

N
i2) = 1

2 − ε
∗ Otherwise ∀a ∈ Σ : TA(qFi1, a, q

F
i2) = 1

2 − ε
– else: ∀a ∈ Σ : (qFi1, a, q

T
i2) ∈ δA, and:

∗ If x2 ∈ {li1, li2, li3}, then TA(qTi1, 1, q
T
i2) = 1

2−ε,
and (qTi1, 0, q

F
i2) = 1

2 − ε,
∗ If x̄2 ∈ {li1, li2, li3}, then TA(qTi1, 0, q

T
i2) = 1

2−ε,
and TA(qTi1, 1, q

F
i2) = 1

2 − ε
∗ Otherwise, ∀a ∈ Σ : TA(qTi1, a, q

F
i2) = 1

2 − ε
• For i∗Ci

≤ i < n:

– ∀a ∈ Σ : TA(qTi , a, q
T
i+1) = 1

2 − ε,
– If xi ∈ {li1, li2, li3}:
∗ TA(qFi , 1, q

T
i+1) = 1

2 − ε,
∗ TA(qFi , 0, q

F
i+1) = 1

2 − ε,
– Else if x̄i ∈ {li1, li2, li3}:
∗ TA(qFi , 0, q

T
i+1) = 1

2 − ε,
∗ TA(qFi , 1, q

F
i+1) = 1

2 − ε,
- Else: ∀S ∈ {T, F}, a ∈ Σ : TA(qSi , a, q

S
i+1) =

1
2 − ε

The construction above runs in O(nk) time.
• Construction of a RNN: The RNN R we’ll con-
struct is trivial, and it generates the quantitative lan-
guage R(w) = 2(1

2 − ε)
|w|ε. More formally, our RNN is

defined as:

• N = 2 (2 hidden neurons),

•

(
h

(0)
n1

h
(0)
n2

)
=

(
0
0

)
• Transition matrices: Win =

(
0 0
0 0

)
; W0 = W1 =

W$ =

(
0
0

)
• Output matrices: O =

0 0
0 0
0 0

, O′ =

log2
1−2ε

4ε
log2

1−2ε
4ε

0


where log2(.) is the logarithm to the base 2

What’s left is to show that R(w) = 2( 1
2 - ε)|w| defines

a consistent language model:

Proposition 5.2. For any ε < 1
2 , the weighted lan-

guage model defined as f(w) = 2( 1
2 − ε)

|w|ε is consis-
tent.

Proof. We have:∑
w∈Σ∗

f(w) = 2ε
∑
n∈N

∑
w:|w|=n

(
1

2
− ε)n

= 2ε
∑
n∈N

(1− 2ε)n

By applying the equality:
∑
n∈N

xn = 1
1−x for any |x| <

1 on the sum present in the right-hand term of the
equation above, we obtain the result.

Proposition 5.3. Let Ψ be an arbitrary 3-SAT for-
mula with n variables and k clauses. Let A be the PFA
constructed from Ψ by the procedure detailed above, the
probabilistic language generated by A is given as:

A(w) =


2( 1

2 − ε)
|w|ε if |w| < n

2( 1
2 − ε)

|w|ε[Nw

k
1−2ε

2ε + k−Nw

k ] if |w| = n

2( 1
2 − ε)

|w|ε[
Nw:n

k
2ε

1−2ε +
k−Nw:n

k ] else

Proposition 5.4. For any rational number ε < 1
4 ,

there exists a rational number cε such that Ψ is satis-
fiable if and only if d∞(R,A) > cε

Proof. For any w such that |w| < n, |R(w)−A(w)| = 0
.
For |w| = n, we have:

|R(w)−A(w)| = 2ε(
1

2
− ε)nNw

k
(
1− 4ε

2ε
)

On the other hand, for |w| > n, we have:

|R(w)−A(w)| = 2ε(
1

2
− ε)|w|Nw

k

1− 4ε

1− 2ε

8



1/2ε

q0

0/2ε

qT11

0/2ε

qT12

0/2ε

qT13

0/1− 2ε qT14

0/2ε

qF11

0/2ε

qF12

0/2ε

qF13

0/2ε qF14

0/2ε

qT21

0/2ε

qT22

0/2ε

qT23

0/1− 2ε qT24

0/2ε

qF21

0/2ε

qF22

0/2ε

qF23

0/2ε qF24

1
:
1

4
−
ε

2

0 :
1
′ −

ε
2

1 : 1
4 − ε

20
: 1
4 −

ε
2

0, 1 : 1
2 − ε 0, 1 : 1

2 − ε 0, 1 : 1
2 − ε

1 :
1
2
− ε

0 : 1
2 − ε

1 :
1
2
− ε

0 : 1
2 − ε

1 :
1
2
− ε

0 : 1
2 − ε

0, 1 : ε

0, 1 : 1
2 − ε

0 : 1
2 − ε

1 : 1
2 − ε

0, 1 : 1
2 − ε 0, 1 : 1

2 − ε

1 : 1
2 − ε

0 :
1
2
− ε

0 : 1
2 − ε

1 :
1
2
− ε

0 : 1
2 − ε

1 :
1
2
− ε

0, 1 : ε

0, 1 : 1
2 − ε

Figure 1: A graphical representation of the PFA constructed from Ψ = (x1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x3 ∨ x4)

Note that we have for any ε < 1
4 :

∀w ∈ Σ≥n : |R(w)−A(w)| ≤ |R(w:n)−A(w:n)|

This means that, under this construction, the maxi-
mum is reached necessarily by a string whose length is
exactly equal to n. Thus, we obtain:

d∞(R,A) = 2
ε

k
(
1

2
− ε)n 1− 4ε

2ε
max
w∈Σn

Nw

Note that Ψ is satisfiable if and only if max
w∈Σn

Nw =

k. As a result, pick any s ∈ [k − 1, k), and define
cε = 2 εsk ( 1

2 − ε)
n 1−4ε

2ε , the formula is satisfiable if and
only if d∞(R,A) > cepsilon.

Theorem 5.5. The Tchebychev distance approxima-
tion problem between consistent RNN-LMs and PFAs
in finite support is NP-Hard.

Proof. We reduce the 3-SAT satisfiability problem to
our problem. Let Ψ be an arbitrary 3-SAT formula.
Construct a PFA A and a RNN R as specified previ-
ously. Choose a rational number ε < 1

4 . Let cε > 0 be
any rational number as specified in the proof of Propo-
sition 5.4, and N = n + 1. By Proposition 5.4, Ψ is
satisfiable if and only if d∞(R,A) > cε, which com-
pletes the proof

Remarks:
NP-Hardness for LSTMs/GRUS: Although our

main focus in this article was on first-order RNN-LMs
with one hidden layer, It is worth noting that the
NP-Hardness reduction technique from 3-SAT prob-
lem we employed can easily be generalized to the case
of LSTMs, and GRUs, two widely used RNN architec-
tures in practice. Indeed, our reduction relies on the
construction of a memoryless first-order RNN which
makes abstraction of the state of the hidden units of the
network, and exploits only the output bias vector O′.
Hence, provided we have first-order output function for
a LSTM (or GRU) architecture, the NP-Hardness re-
sult demonstrated above is easy to extend our proof to
these architectures.

Finite precision RNNs: As said earlier in section
2, a new line of work considered the analysis of the
computational power of RNNs with bounded resources,
which is a realistic condition in practice[21][34].
Broadly speaking, a finite-precision RNN is one whose
weights and values of its hidden units are stored us-
ing a finite number of bits (See [18] for further de-
tails). Under our construction, the same remark raised
above about LSTMs/GRUs can be applied to RNNs
with finite precision. In fact, It’s easy to notice that,
with a judicious choice of ε, say 1

10 (in which case
O′[0] = O′[1] = 2), the toy memoryless RNN we con-
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structed in the proof requires only 2 bits to encode a
hidden unit and a weight value of the network. This
shows that even approximating the Tcheybetchev dis-
tance in finite support between a language represented
by PFA and that of a finite-precision first-order RNN
with any computable activation function is also NP-
Hard.

6 Conclusion and perspectives
In this article, we investigated some computational
problems related to the issue of approximating trained
RNN language models by different classes of finite state
automata. We proved that the equivalence problem of
PDFAs/PFAs/WFAs and general weighted first-order
RNN-LM with ReLu activation function with a sin-
gle hidden layer is generally undecidable, and, as a
result, trying to calculate any distance between them
can’t be computed. When restricting RNN-LMs to be
consistent, we proved that approximating the Tcheby-
chev distance between consistent RNN-LMs with gen-
eral computable activation functions and PFAs/HMMs
is decidable, and that the same problem when re-
stricted to a finite support is at least NP-Hard. More-
over, we gave arguments that the reduction strategy
from 3-SAT problem we employed to prove this latter
result makes this result generalizable to the class of
LSTMs/GRUs and finite precision RNNs.
This work provides first theoretical results of examin-
ing equivalence and the quality of approximation prob-
lems between automata-based models and RNNs from
a computational viewpoint. Yet, there are still many
interesting problems on the issue that could motivate
future research, such as: Is the equivalence problem
between general RNN-LMs and different classes of fi-
nite state machines still undecidable when other highly
non-linear activation functions (e.g. sigmoid, hyper-
bolic tangent . . . ) are used instead of ReLus? Is the
equivalence problem between the cut-point language of
an RNN-LM and a DFA decidable? If an RNN-LM is
trained to recognise a language generated by a regu-
lar grammar, can we decide if its cut-point language is
indeed regular? etc.
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