
Implicit differentiation of Lasso-type models for hyperparameter
optimization

Quentin Bertrand ∗1, Quentin Klopfenstein †2, Mathieu Blondel3, Samuel Vaiter2, Alexandre
Gramfort1, and Joseph Salmon4

1Université Paris-Saclay, Inria, CEA, Palaiseau, France
2Institut Mathématique de Bourgogne, Université de Bourgogne, Dijon, France

3Google Research, Brain team, Paris, France
4IMAG,Univ Montpellier, CNRS, Montpellier, France

May 31, 2020

Abstract

Setting regularization parameters for Lasso-type esti-
mators is notoriously difficult, though crucial in prac-
tice. The most popular hyperparameter optimization
approach is grid-search using held-out validation data.
Grid-search however requires to choose a predefined
grid for each parameter, which scales exponentially in
the number of parameters. Another approach is to
cast hyperparameter optimization as a bi-level opti-
mization problem, one can solve by gradient descent.
The key challenge for these methods is the estimation
of the gradient w.r.t. the hyperparameters. Comput-
ing this gradient via forward or backward automatic
differentiation is possible yet usually suffers from high
memory consumption. Alternatively implicit differen-
tiation typically involves solving a linear system which
can be prohibitive and numerically unstable in high
dimension. In addition, implicit differentiation usually
assumes smooth loss functions, which is not the case
for Lasso-type problems. This work introduces an effi-
cient implicit differentiation algorithm, without matrix
inversion, tailored for Lasso-type problems. Our ap-
proach scales to high-dimensional data by leveraging
the sparsity of the solutions. Experiments demonstrate
that the proposed method outperforms a large number
of standard methods to optimize the error on held-out
data, or the Stein Unbiased Risk Estimator (SURE).

Keys-words: hyperparameter optimization, sparsity,
automatic differentiation.
∗firstname.lastname@inria.fr
†firstname.lastname@u-bourgogne.fr

1 Introduction

In many statistical applications, the number of param-
eters p is much larger than the number of observations
n. In such scenarios, a popular approach to tackle lin-
ear regression problems is to consider convex `1-type
penalties, used in Lasso [Tib96], Group-Lasso [YL06],
Elastic-Net [ZH05] or adaptive Lasso [Zou06]. These
Lasso-type estimators rely on regularization hyperpa-
rameters, trading data fidelity against sparsity. Un-
fortunately, setting these hyperparameters is hard in
practice: estimators based on `1-type penalties are in-
deed more sensitive to the choice of hyperparameters
than `2 regularized estimators.

To control for overfitting, it is customary to use dif-
ferent datasets for model training (i.e., computing the
regression coefficients) and hyperparameter selection
(i.e., choosing the best regularization parameters). A
metric, e.g., hold-out loss, is optimized on a valida-
tion dataset [SR65]. Alternatively one can rely on a
statistical criteria that penalizes complex models such
as AIC/BIC [LY+11] or SURE (Stein Unbiased Risk
Estimator, [Ste81]). In all cases, hyperparameters are
tuned to optimize a chosen metric.

The canonical hyperparameter optimization method
is grid-search. It consists in fitting and selecting the
best model over a predefined grid of parameter val-
ues. The complexity of grid-search is exponential
with the number of hyperparameters, making it only
competitive when the number of hyperparameters is
small. Other hyperparameter selection strategies in-
clude random search [BB12] and Bayesian optimization
[BCDF10, SLA12] that aims to learn an approximation

1



of the metric over the parameter space and rely on an
exploration policy to find the optimum.

Another line of work for hyperparameter optimiza-
tion (HO) relies on gradient descent in the hyper-
parameter space (e.g., differetiate the Lasso solution
with respect to λ). This strategy has been widely ex-
plored for smooth objective functions [LHSO96, Ben00,
LSAH12]. The main challenge for this class of meth-
ods is estimating the gradient w.r.t. the hyperparam-
eters. Gradient estimation techniques are mostly di-
vided in two categories. Implicit differentiation re-
quires the exact solution of the optimization problem
and involves the resolution of a linear system [Ben00].
This can be expensive to compute and lead to nu-
merical instabilities, especially when the system is ill-
conditioned [LVD19]. Alternatively, iterative differen-
tiation computes the gradient using the iterates of an
optimization algorithm. Backward iterative differen-
tiation [Dom12] is computationally efficient when the
number of hyperparameters is large. However it is
memory consuming since it requires storing all inter-
mediate iterates. In contrast, forward iterative differ-
entiation [DVFP14, FDFP17] does not require storing
the iterates but can be computationally expensive with
a large number of hyperparameters; see [BPRS18] for
a survey.

This article proposes to investigate the use of these
methods to set the regularization hyperparameters in
an automatic fashion for Lasso-type problems. To
cover the cases of both low and high number of hyper-
parameters, two estimators are investigated, namely
the Lasso and the weighted Lasso which have respec-
tively one or as many parameters as features. Our
contributions are as follows:

• We show that forward iterative differentiation of
block coordinate descent (BCD), a state-of-the-art
solver for Lasso-type problems, converges towards
the true gradient. Crucially, we show that this
scheme converges linearly once the support is iden-
tified and that its limit does not depend of the
initial starting point.

• These results lead to the proposed algorithm (Al-
gorithm 2) where the computation of the Jacobian
is decoupled from the computation of the regres-
sion coefficients. The later can be done with state-
of-the-art convex solvers, and interestingly, it does
not require solving a linear system, potentially ill-
conditioned.

• We show through an extensive benchmark on sim-
ulated and real high dimensional data that the

proposed method outperforms state-of-the-art HO
methods.

Our work should not be confused with the line of work
by [GL10], where the Lasso objective value is differen-
tiated w.r.t. optimization parameters instead of the
solution. In other words, we tackle argmin rather than
min differentiation.
Notation The design matrix is X ∈ Rn×p (corre-

sponding to n samples and p features) and the ob-
servation vector is y ∈ Rn. The regularization pa-
rameter, possibly multivariate, is denoted by λ =
(λ1, . . . , λr)

> ∈ Rr. We denote β̂(λ) ∈ Rp the regres-
sion coefficients associated to λ. We denote Ĵ(λ) ,

(∇λβ̂(λ)
1 , . . . ,∇λβ̂(λ)

p )> ∈ Rp×r the weak Jacobian
[EG92] of β̂(λ) w.r.t. λ. For a function ψ : Rp×Rr → R
with weak derivatives of order two, we denote by
∇βψ(β, λ) ∈ Rp (resp. ∇λ(β, λ) ∈ Rr) its weak gra-
dient w.r.t. the first parameter (resp. the second pa-
rameter). The weak Hessian ∇2ψ(β, λ) is a matrix in
R(p+r)×(p+r) which has a block structure

∇2ψ(β, λ) =

( ∇2
βψ(β, λ) ∇2

β,λψ(β, λ)

∇2
λ,βψ(β, λ) ∇2

λψ(β, λ)

)
.

The support of β̂(λ) (the indices of non-zero coeffi-
cients) is denoted by Ŝ(λ), and ŝ(λ) represents its cardi-
nality (i.e., the number of non-zero coefficients). The
sign vector sign β̂(λ) ∈ Rp is the vector of component-
wise signs (with the convention that sign(0) = 0) of
β̂(λ). Note that to ease the reading, we drop λ in
the notation when it is clear from the context and use
β̂, Ĵ , Ŝ and ŝ.

2 Background

2.1 Problem setting

To favor sparse coefficients, we consider Lasso-type
estimators based on non-smooth regularization func-
tions. Such problems consist in finding:

β̂(λ) ∈ arg min
β∈Rp

ψ(β, λ) . (1)

The Lasso [Tib96] is recovered, with the number of
hyperparameters set to r = 1:

ψ(β, λ) =
1

2n
‖y −Xβ‖22 + eλ‖β‖1 , (2)

while the weighted Lasso (wLasso, [Zou06], introduced
to reduce the bias of the Lasso) has r = p hyperparam-

2



eters and reads:

ψ(β, λ) =
1

2n
‖y −Xβ‖22 +

p∑
j=1

eλj |βj | . (3)

Note that we adopt the hyperparameter parametriza-
tion of [Ped16], i.e., we write the regularization param-
eter as eλ. This avoids working with a positivity con-
straint in the optimization process and fixes scaling is-
sues in the line search. It is also coherent with the usual
choice of a geometric grid for grid search [FHT10].
Remark. Other formulations could be investigated

like Elastic-Net or non-convex formulation, e.g., MCP
[Zha10]. Our theory does not cover non-convex cases,
though we illustrate that it behaves properly numeri-
cally. Handling such non-convex cases is left as a ques-
tion for future work.

The HO problem can be expressed as a nested bi-
level optimization problem. For a given differentiable
criterion C : Rp 7→ R (e.g., hold-out loss or SURE), it
reads:

arg min
λ∈Rr

{
L(λ) , C

(
β̂(λ)

)}
s.t. β̂(λ) ∈ arg min

β∈Rp
ψ(β, λ) . (4)

Note that SURE itself is not necessarily weakly dif-
ferentiable w.r.t. β̂(λ). However a weakly differentiable
approximation can be constructed [RBU08, DVFP14].
Under the hypothesis that Equation (1) has a unique
solution for every λ ∈ Rr, the function λ 7→ β̂(λ) is
weakly differentiable [VDP+13]. Using the chain rule,
the gradient of L w.r.t. λ then writes:

∇λL(λ) = Ĵ>(λ)∇C
(
β̂(λ)

)
. (5)

Computing the weak Jacobian Ĵ(λ) of the inner prob-
lem is the main challenge, as once the hypergradient
∇λL(λ) has been computed, one can use usual gradi-
ent descent, λ(t+1) = λ(t) − ρ∇λL(λ(t)), for a step size
ρ > 0. Note however that L is usually non-convex and
convergence towards a global minimum is not guaran-
teed. In this work, we propose an efficient algorithm
to compute Ĵ(λ) for Lasso-type problems, relying on
improved forward differentiation.

2.2 Implicit differentiation (smooth
case)

Implicit differentiation, which can be traced back to
[LHSO96], is based on the knowledge of β̂ and requires

solving a p × p linear system [Ben00, Sec. 4]. Since
then, it has been extensively applied in various con-
texts. [CVBM02, See08] used implicit differentiation to
select hyperparameters of kernel-based models. [KP13]
applied it to image restoration. [Ped16] showed that
each inner optimization problem could be solved only
approximately, leveraging noisy gradients. Related to
our work, [FDN08] applied implicit differentiation on a
“weighted” Ridge-type estimator (i.e., a Ridge penalty
with one λj per feature).

Yet, all the aforementioned methods have a common
drawback : they are limited to the smooth setting,
since they rely on optimality conditions for smooth op-
timization. They proceed as follows: if β 7→ ψ(β, λ)
is a smooth convex function (for any fixed λ) in Equa-
tion (1), then for all λ, the solution β̂(λ) satisfies the
following fixed point equation:

∇βψ
(
β̂(λ), λ

)
= 0 . (6)

Then, this equation can be differentiated w.r.t. λ:

∇2
β,λψ(β̂(λ), λ) + Ĵ>(λ)∇2

βψ(β̂(λ), λ) = 0 . (7)

Assuming that ∇2
βψ(β̂(λ), λ) is invertible this leads to

a closed form solution for the weak Jacobian Ĵ(λ):

Ĵ>(λ) = −∇2
β,λψ

(
β̂(λ), λ

)(
∇2
βψ(β(λ), λ)

)
︸ ︷︷ ︸

p×p

−1
, (8)

which in practice is computed by solving a linear sys-
tem. Unfortunately this approach cannot be general-
ized for non-smooth problems since Equation (6) no
longer holds.

2.3 Implicit differentiation (non-
smooth case)

Related to our work [MBP12] used implicit differen-
tiation with respect to the dictionary (X ∈ Rn×p) on
Elastic-Net models to perform dictionary learning. Re-
garding Lasso problems, the literature is quite scarce,
see [DKF+13, ZHT07] and [VDP+13, TT11] for a more
generic setting encompassing weighted Lasso. General
methods for gradient estimation of non-smooth opti-
mization schemes exist [VDP+17] but are not prac-
tical since they depend on a possibly ill-posed linear
system to invert. [AK17] have applied implicit dif-
ferentiation on estimators based on quadratic objec-
tive function with linear constraints, whereas [NB17]
have used implicit differentiation on a smooth objec-
tive function with simplex constraints. However none

3



of these approaches leverages the sparsity of Lasso-type
estimators.

3 Hypergradients for Lasso-type
problems

To tackle hyperparameter optimization of non-smooth
Lasso-type problems, we propose in this section an ef-
ficient algorithm for hypergradient estimation. Our al-
gorithm relies on implicit differentiation, thus enjoying
low-memory cost, yet does not require to naively solve
a (potentially ill-conditioned) linear system of equa-
tions. In the sequel, we assume access to a (weighted)
Lasso solver, such as ISTA [DDD04] or Block Coordi-
nate Descent (BCD, [TY09], see also Algorithm 5).

3.1 Implicit differentiation

Our starting point is the key observation that Lasso-
type solvers induce a fixed point iteration that we can
leverage to compute a Jacobian. Indeed, proximal
BCD algorithms [TY09], consist in a local gradient step
composed with a soft-thresholding step (ST), e.g., for
the Lasso, the local updates of the regression coeffi-
cients β writes, for j ∈ 1, . . . , p:

βj ← ST

(
βj −

X>:,j(Xβ − y)

‖X:,j‖2
,
neλ

‖X:,j‖

)
, (9)

where ST(t, τ) = sign(t) · (|t| − τ)+ for any t ∈ R and
τ ≥ 0 (extended for vectors component-wise). The
solution of the optimization problem satisfies, for any
α > 0, the fixed-point equation [CW05, Prop. 3.1]:

β̂
(λ)
j = ST

(
β̂
(λ)
j − 1

α
X>(Xβ̂(λ) − y),

neλ

α

)
. (10)

The former can be differentiated w.r.t. λ, see Lemma 1
in Appendix, leading to a closed form solution for the
Jacobian J(λ) of the Lasso and the weighted Lasso.

Proposition 1 (Adapting [VDP+13, Thm. 1]). Let
Ŝ be the support of the vector β̂(λ), let X>

Ŝ
XŜ be the

matrix formed with the columns Xj for j ∈ Ŝ. Suppose
that X>

Ŝ
XŜ � 0 , then a weak Jacobian Ĵ = Ĵ(λ) of

the Lasso writes:

ĴŜ = −neλ
(
X>
Ŝ
XŜ

)−1
sign β̂Ŝ , (11)

ĴŜc = 0 , (12)

and for the weighted Lasso:

ĴŜ,Ŝ = −
(
X>
Ŝ
XŜ

)−1
diag

(
neλŜ � sign β̂Ŝ

)
(13)

Ĵj1,j2 = 0 if j1 /∈ Ŝ or if j2 /∈ Ŝ . (14)

The proof of Proposition 1 can be found in Ap-
pendix A.1. Note that the positivity condition in
Proposition 1 is satisfied if the (weighted) Lasso has a
unique solution. Moreover, even for multiple solutions
cases, there exists at least one satisfying the positivity
condition [VDP+13].

Proposition 1 shows that the Jacobian of the
weighted Lasso Ĵ(λ) ∈ Rp×p is row and column sparse.
This is key for algorithmic efficiency. Indeed, a pri-
ori, one has to store a possibly dense p × p matrix,
which is prohibitive when p is large. Proposition 1
leads to a simple algorithm (see Algorithm 1) to com-
pute the Jacobian in a cheap way, as it only requires
storing and inverting an ŝ× ŝ matrix. Even if the lin-
ear system to solve is of size ŝ× ŝ, instead of p× p for
smooth objective function, the system to invert can be
ill-conditioned, especially when a large support size ŝ
is encountered. This leads to numerical instabilities
and slows down the resolution (see an illustration in
Figure 2). Forward (Algorithm 3 in Appendix) and
backward (Algorithm 4 in Appendix) iterative differ-
entiation, which do not require solving linear systems,
can overcome these issues.

3.2 Link with iterative differentiation
Iterative differentiation in the field of hyperparame-
ter setting can be traced back to [Dom12] who de-
rived a backward differentiation algorithm for gradi-
ent descent, heavy ball and L-BFGS algorithms ap-
plied to smooth loss functions. [AAB+19] generalized
it to a specific subset of convex programs. [MDA15]
derived a backward differentiation for stochastic gradi-
ent descent. On the other hand [DVFP14] used for-
ward differentiation of (accelerated) proximal gradi-
ent descent for hyperparameter optimization with non-
smooth penalties. [FDFP17] proposed a benchmark of
forward mode versus backward mode, varying the num-
ber of hyperparameters to learn.

Forward differentiation consists in differentiating
each step of the algorithm (w.r.t. λ in our case). For
the Lasso solved with BCD it amounts differentiat-
ing affectation 9 w.r.t. λ, and leads to the follow-
ing recursive affectation for the Jacobian, with zj =

βj − X>:,j(Xβ − y)/ ‖X:,j‖2, ∂1ST the partial deriva-
tive of the soft-thresholding w.r.t. to the first variable,
∂2ST the partial derivative of the soft-thresholding

4



Algorithm 1 Implicit differentiation
input : X, y, λ
if Lasso then

Get β̂ = Lasso(X, y, λ) and its support Ŝ.
Ĵ = 0p
ĴŜ = −neλ(X>

Ŝ
XŜ)−1 sign β̂Ŝ

if wLasso then
Get β̂ = wLasso(X, y, λ) and its support Ŝ.
Ĵ = 0p×p
ĴŜ,Ŝ = −(X>

Ŝ
XŜ)−1 diag(neλŜ � sign β̂Ŝ)

return β̂, Ĵ

w.r.t. to the second variable:

Jj ←∂1 ST
(
zj ,

neλ

‖X:,j‖2

)(
Jj − 1

‖X:,j‖2
X>:,jXJ

)
+ ∂2 ST

(
zj ,

neλ

‖X:,j‖2

)
neλ

‖X:,j‖2
, (15)

see Algorithm 3 (in Appendix) for full details.
Our proposed algorithm exploits that after a
fixed number of epochs ∂1 ST(zj , ne

λ/ ‖X:,j‖2) and
∂2 ST(zj , ne

λ/ ‖X:,j‖2) are constant. It is thus pos-
sible to decouple the computation of the Jacobian by
only solving Equation (1) in a first step and then apply
the forward differentiation recursion steps, see Algo-
rithm 2. This can be seen as the forward counterpart
in a non-smooth case of the recent paper [LVD19].

An additional benefit of such updates is that they
can be restricted to the (current) support, which leads
to faster Jacobian computation. We now show that the
Jacobian computed using forward differentiation and
our method, Algorithm 2, converges toward the true
Jacobian.

Proposition 2. Assuming the Lasso solution (Equa-
tion (2)) (or weighted Lasso Equation (3)) is unique,
then Algorithms 2 and 3 converge toward the implicit
differentiation solution Ĵ defined in Proposition 1.
Moreover once the support has been identified the con-
vergence of the Jacobian is linear and its limit does not
depend on the initial starting point J (0).

Proof of Proposition 2 can be found in Appen-
dices A.2 and A.3.

As an illustration, Figure 1 shows the times of com-
putation of a single gradient ∇λL(λ) and the distance
to “optimum” of this gradient as a function of the
number of iterations in the inner optimization problem
for the forward iterative differentiation (Algorithm 3),
the backward iterative differentiation (Algorithm 4),
and the proposed algorithm (Algorithm 2). The back-

Imp. F. Iterdiff. (ours) F. Iterdiff. B. Iterdiff.

20 40 60
Number of iterations

10−1

100

101

T
im

es
(s

)

20 40 60
Number of iterations

10−7

10−5

O
bj

ec
ti

ve
m

in
us

op
ti

m
um

Figure 1 – Time to compute a single gradient
(Synthetic data, Lasso, n, p = 1000, 2000). Influence
on the number of iterations of BCD (in the inner op-
timization problem of Equation (4)) on the computa-
tion time (left) and the distance to “optimum” of the
gradient ∇λL(λ)(right) for the Lasso estimator. The
“optimum” is here the gradient given by implicit differ-
entiation (Algorithm 1).

ward iterative differentiation is several order of magni-
tude slower than the forward and our implicit forward
method. Moreover, once the support has been identi-
fied (after 20 iterations) the proposed implicit forward
method converges faster than other methods. Note also
that in Propositions 1 and 2 the Jacobian for the Lasso
only depends on the support (i.e., the indices of the
non-zero coefficients) of the regression coefficients β̂(λ).
In other words, once the support of β̂(λ) is correctly
identified, even if the value of the non-zeros coefficients
are not correctly estimated, the Jacobian is exact, see
[SJNS19] for support identification guarantees.

4 Experiments

All the experiments are written in Python using
Numba [LPS15] for the critical parts such as the BCD
loop. We compare our gradient computation technique
against other competitors (see the competitors section)
on the HO problem (Equation (4)).
Solving the inner optimization problem. Note

that our proposed method, implicit forward differenti-
ation, has the appealing property that it can be used
with any solver. For instance for the Lasso one can
combine the proposed algorithm with state of the art
solver using of screening rules and active sets, such as
[MGS18] which would be tedious to combine with it-
erative differentiation methods. However for the com-
parison to be fair, for all methods we have used
the same vanilla BCD algorithm (recalled in Al-
gorithm 5). We stop the Lasso-types solver when

5



Table 1 – Summary of cost in time and space for each method

Mode Computed Space Time Space Time
quantity (Lasso) (Lasso) (wLasso) (wLasso)

F. Iterdiff. J O(p) O(2npniter) O(p2) O(np2niter)
B. Iterdiff. J>v O(2pniter) O(npniter + np2niter) O(p2niter) O(npniter + np2niter)
Implicit J>v O(p) O(npniter + ŝ3) O(p+ ŝ2) O(npniter + ŝ3)
Imp. F. Iterdiff. J O(p) O(npniter + nŝniter_jac) O(p+ ŝ2) O(npniter + nŝ2nit_jac)

Algorithm 2 Imp. F. Iterdiff. (proposed)
input : X, y, λ, niter_jac
init : J = 0
if Lasso then

Get β̂ = Lasso(X, y, λ) and its support Ŝ.
dr = −X:,ŜJŜ

if wLasso then
Get β̂ = wLasso(X, y, λ) and its support Ŝ.
dr = −X:,ŜJŜ,Ŝ

for k = 0, . . . , niter_jac − 1 do
for j ∈ Ŝ do

if Lasso then
Jold = Jj
Jj +=

X>:,jdr

‖X:,j‖2
− neλ

‖X:,j‖2
sign β̂j

drj −= X:,j(Jj,: − Jold)
if wLasso then
Jold = Jj,:
Jj,Ŝ += 1

‖X:,j‖2
X>:,jdr

Jj,j −= neλj

‖X:,j‖2
sign β̂j

dr −= X:,j ⊗ (Jj,: − Jold)
return β̂,J

f(β(k+1))−f(β(k))
f(0) < εtol , where f is the cost function of

the Lasso or wLasso and εtol a given tolerance. The tol-
erance is fixed at εtol = 10−5 for all methods through-
out the different benchmarks.
Line search. For each hypergradient-based

method, the gradient step is combined with a line-
search strategy following the work of [Ped16]. The
procedure is detailed in Appendix1.
Initialization. Since the function to optimize L is

not convex, initialization plays a crucial role in the final
solution as well as the convergence of the algorithm.
For instance, initializing λ = λinit in a flat zone of
L(λ) could lead to slow convergence. In the numerical
experiments, the Lasso is initialized with λinit = λmax−
log(10), where λmax is the smallest λ such that 0 is a

1see https://github.com/fabianp/hoag for details

solution of Equation (2).
Competitors. In this section we compare the em-

pirical performance of implicit forward differentiation
algorithm to different competitors. Competitors are
divided in two categories. Firstly, the ones relying on
hyperparameter gradient:

• Imp. F. Iterdiff.: implicit forward differentia-
tion (proposed) described in Algorithm 2.

• Implicit: implicit differentiation, which requires
solving a ŝ× ŝ linear system as described in Algo-
rithm 1.

• F. Iterdiff.: forward differentiation [DVFP14,
FDFP17] which jointly computes the regression
coefficients β̂ as well as the Jacobian Ĵ as shown
in Algorithm 3.

Secondly, the ones not based on hyperparameter gra-
dient:

• Grid-search: as recommended by [FHT10], we
use 100 values on a uniformly-spaced grid from
λmax to λmax − 4 log(10).

• Random-search: we sample uniformly at ran-
dom 100 values taken on the same interval as for
the Grid-search [λmax − 4 log(10);λmax], as sug-
gested by [BYC13].

• Bayesian: sequential model based optimization
(SMBO) using a Gaussian process to model the
objective function. We used the implementation of
[BYC13].2 The constraints space for the hyperpa-
rameter search was set in [λmax− 4 log(10);λmax],
and the expected improvement (EI) was used as
aquisition function.

The cost and the quantity computed by each algorithm
can be found in Table 1. The backward differentiation
[Dom12] is not included in the benchmark since it was

2https://github.com/hyperopt/hyperopt

6

https://github.com/fabianp/hoag


several orders of magnitude slower than the other tech-
niques (see Figure 1). This is due to the high cost of
the BCD algorithm in backward mode, see Table 1.

4.1 Application to held-out loss

When using the held-out loss, each dataset (X, y) is
split in 3 equal parts: the training set (Xtrain, ytrain),
the validation set (Xval, yval) and the test set
(Xtest, ytest).

(Lasso, held-out criterion). For the Lasso and the
held-out loss, the bilevel optimization Equation (4)
reads:

arg min
λ∈R

‖yval −Xvalβ̂(λ)‖2 (16)

s.t. β̂(λ) ∈ arg min
β∈Rp

1
2n‖ytrain −Xtrainβ‖22 + eλ‖β‖1 .

Figure 2 (top) shows on 3 datasets (see Appendix E
for dataset details) the distance to the “optimum” of
‖yval − Xvalβ̂(λ)‖2 as a function of time. Here the
goal is to find λ solution of Equation (16). The “opti-
mum” is chosen as the minimum of ‖yval −Xvalβ̂(λ)‖2
among all the methods. Figure 2 (bottom) shows the
loss ‖ytest − Xtestβ̂(λ)‖2 on the test set (independent
from the training set and the validation set). This il-
lustrates how well the estimator generalizes. Firstly, it
can be seen that on all datasets the proposed implicit
forward differentiation outperforms forward differenti-
ation which illustrates Proposition 2 and corroborates
the cost of each algorithm in Table 1. Secondly, it can
be seen that on the 20news dataset (Figure 2, top)
the implicit differentiation (Algorithm 1) convergence
is slower than implicit forward differentiation, forward
differentiation, and even slower than the grid-search.
In this case, this is due to the very slow convergence of
the conjugate gradient algorithm [NW06] when solv-
ing the ill-conditioned linear system in Algorithm 1.
Finally one can see on Figure 2 that solving the full
hyperparameter optimization problem with high preci-
sion on the training set does not transfer to the test
set, suggesting that an early stopping procedure could
be beneficial.

(MCP, held-out criterion). We also applied our algo-
rithm on an estimator based on a non-convex penalty:
the MCP [Zha10] with 2 hyperparameters. Since the
penalty is non-convex the estimator may not be contin-
uous w.r.t. hyperparameters and the theory developed
above does not hold. However experimentally implicit
forward differentiation outperforms forward differenti-
ation for the HO, see Appendix C for full details.

Experiments using the SURE criterion on inverse
problems can be found in Appendix D.

Conclusion

In this work we studied the performance of several
methods to select hyperparameters of Lasso-type esti-
mators showing results for the Lasso and the weighted
Lasso, which have respectively one or p hyperparam-
eters. We exploited the sparsity of the solutions and
the specific structure of the iterates of forward differ-
entiation, leading to our implicit forward differentia-
tion algorithm that computes efficiently the full Jaco-
bian of these estimators w.r.t. the hyperparameters.
This allowed us to select them through a standard gra-
dient descent and have an approach that scales to a
high number of hyperparameters. Importantly, con-
trary to a classical implicit differentiation approach,
the proposed algorithm does not require solving a lin-
ear system. Finally, thanks to its two step nature, it
is possible to leverage in the first step the availabil-
ity of state-of-the-art Lasso solvers that make use of
techniques such as active sets or screening rules. Such
algorithms, that involve calls to inner solvers run on
subsets of features, are discontinuous w.r.t. hyperpa-
rameters which would significantly challenge a single
step approach based on automatic differentiation.

Acknowledgments This work was funded by ERC
Starting Grant SLAB ERC-YStG-676943.

References

[AAB+19] A. Agrawal, B. Amos, S. Barratt, S. Boyd,
S. Diamond, and J. Z. Kolter. Differ-
entiable convex optimization layers. In
Advances in neural information processing
systems, pages 9558–9570, 2019.

[AK17] B. Amos and J. Z. Kolter. Optnet: Differ-
entiable optimization as a layer in neural
networks. In ICML, volume 70, pages 136–
145, 2017.

[BB12] J. Bergstra and Y. Bengio. Random
search for hyper-parameter optimization.
J. Mach. Learn. Res., 13:281–305, 2012.

[BCDF10] E. Brochu, V. M. Cora, and Nando De Fre-
itas. A tutorial on Bayesian optimization

7



Imp. F. Iterdiff. (ours) Implicit F. Iterdiff. Grid-search Bayesian Random-search Lattice Hyp.

0.0 0.5 1.0

10−5

10−4

10−3

10−2

10−1

100
O

bj
ec

ti
ve

m
in

us
op

ti
m

um
rcv1 (p = 19, 959)

0 5 10 15

10−3

10−2

10−1

100

101

102

20news (p = 130, 107)

0 100 200 300

10−4

10−3

10−2

10−1

100

101

finance (p = 1, 668, 737)

0.0 0.5 1.0
Time (s)

10−1

100

L
os

s
on

te
st

se
t

0 5 10 15
Time (s)

101

102

0 100 200 300
Time (s)

10−1

100

101

Figure 2 – Computation time for the HO of the Lasso on real data. Distance to “optimum” (top) and
performance (bottom) on the test set for the Lasso for 3 different datasets: rcv1, 20news and finance.

of expensive cost functions, with applica-
tion to active user modeling and hierarchi-
cal reinforcement learning. arXiv preprint
arXiv:1012.2599, 2010.

[Ben00] Y. Bengio. Gradient-based optimization
of hyperparameters. Neural computation,
12(8):1889–1900, 2000.

[BH11] P. Breheny and J. Huang. Coordinate
descent algorithms for nonconvex penal-
ized regression, with applications to bio-
logical feature selection. Ann. Appl. Stat.,
5(1):232, 2011.

[BPRS18] A. G. Baydin, B. A. Pearlmutter, A. A.
Radul, and J. M. Siskind. Automatic dif-
ferentiation in machine learning: a survey.
J. Mach. Learn. Res., 18(153):1–43, 2018.

[BYC13] J. Bergstra, D. Yamins, and D. D. Cox.
Hyperopt: A python library for optimiz-
ing the hyperparameters of machine learn-
ing algorithms. In Proceedings of the 12th
Python in science conference, pages 13–20,
2013.

[CVBM02] O. Chapelle, V. Vapnik, O. Bousquet, and
S. Mukherjee. Choosing multiple parame-

ters for support vector machines. Machine
learning, 46(1-3):131–159, 2002.

[CW05] P. L. Combettes and V. R. Wajs. Signal
recovery by proximal forward-backward
splitting. Multiscale Modeling & Simula-
tion, 4(4):1168–1200, 2005.

[DDD04] I. Daubechies, M. Defrise, and C. De
Mol. An iterative thresholding algorithm
for linear inverse problems with a spar-
sity constraint. Comm. Pure Appl. Math.,
57(11):1413–1457, 2004.

[DKF+13] C. Dossal, M. Kachour, M.J. Fadili,
G. Peyré, and C. Chesneau. The degrees of
freedom of the lasso for general design ma-
trix. Statistica Sinica, 23(2):809–828, 2013.

[Dom12] J. Domke. Generic methods for
optimization-based modeling. In AIS-
TATS, volume 22, pages 318–326, 2012.

[DVFP14] C.-A. Deledalle, S. Vaiter, J. Fadili, and
G. Peyré. Stein Unbiased GrAdient estima-
tor of the Risk (SUGAR) for multiple pa-
rameter selection. SIAM J. Imaging Sci.,
7(4):2448–2487, 2014.

8



[Efr86] B. Efron. How biased is the apparent error
rate of a prediction rule? J. Amer. Statist.
Assoc., 81(394):461–470, 1986.

[EG92] L. C. Evans and R. F. Gariepy. Mea-
sure theory and fine properties of functions.
CRC Press, 1992.

[FDFP17] L. Franceschi, M. Donini, P. Frasconi, and
M. Pontil. Forward and reverse gradient-
based hyperparameter optimization. In
ICML, pages 1165–1173, 2017.

[FDN08] C. S. Foo, C. B. Do, and A. Y. Ng. Effi-
cient multiple hyperparameter learning for
log-linear models. In Advances in neural
information processing systems, pages 377–
384, 2008.

[FHT10] J. Friedman, T. J. Hastie, and R. Tibshi-
rani. Regularization paths for generalized
linear models via coordinate descent. J.
Stat. Softw., 33(1):1–22, 2010.

[GL10] K. Gregor and Y. LeCun. Learning fast
approximations of sparse coding. In ICML,
pages 399–406, 2010.

[HYZ08] E. Hale, W. Yin, and Y. Zhang. Fixed-
point continuation for `1-minimization:
Methodology and convergence. SIAM J.
Optim., 19(3):1107–1130, 2008.

[KP13] K. Kunisch and T. Pock. A bilevel opti-
mization approach for parameter learning
in variational models. SIAM J. Imaging
Sci., 6(2):938–983, 2013.

[LHSO96] J. Larsen, L. K. Hansen, C. Svarer, and
M. Ohlsson. Design and regularization of
neural networks: the optimal use of a val-
idation set. In Neural Networks for Sig-
nal Processing VI. Proceedings of the 1996
IEEE Signal Processing Society Workshop,
pages 62–71, 1996.

[LPS15] S. K. Lam, A. Pitrou, and S. Seibert.
Numba: A LLVM-based Python JIT Com-
piler. In Proceedings of the Second Work-
shop on the LLVM Compiler Infrastructure
in HPC, pages 1–6. ACM, 2015.

[LSAH12] J. Larsen, C. Svarer, L. N. Andersen, and
L. K. Hansen. Adaptive regularization in
neural network modeling. In Neural Net-
works: Tricks of the Trade - Second Edi-
tion, pages 111–130. Springer, 2012.

[LVD19] J. Lorraine, P. Vicol, and D. Duvenaud.
Optimizing millions of hyperparameters by
implicit differentiation. arXiv preprint
arXiv:1911.02590, 2019.

[LY+11] W. Liu, Y. Yang, et al. Parametric or
nonparametric? a parametricness index for
model selection. Ann. Statist., 39(4):2074–
2102, 2011.

[MBP12] J. Mairal, F. Bach, and J. Ponce. Task-
driven dictionary learning. IEEE Trans.
Pattern Anal. Mach. Intell., 34(4):791–
804, 2012.

[MDA15] D. Maclaurin, D. Duvenaud, and Ryan
Adams. Gradient-based hyperparameter
optimization through reversible learning.
In ICML, volume 37, pages 2113–2122,
2015.

[MGS18] M. Massias, A. Gramfort, and J. Salmon.
Celer: a Fast Solver for the Lasso with
Dual Extrapolation. In ICML, volume 80,
pages 3315–3324, 2018.

[MVGS19] M. Massias, S. Vaiter, A. Gramfort, and
J. Salmon. Dual extrapolation for sparse
generalized linear models. arXiv preprint
arXiv:1907.05830, 2019.

[NB17] V. Niculae and M. Blondel. A regularized
framework for sparse and structured neural
attention. In Advances in neural informa-
tion processing systems, pages 3338–3348,
2017.

[NW06] J. Nocedal and S. J. Wright. Numerical
optimization. Springer Series in Opera-
tions Research and Financial Engineering.
Springer, New York, second edition, 2006.

[Ped16] F. Pedregosa. Hyperparameter optimiza-
tion with approximate gradient. In ICML,
volume 48, pages 737–746, 2016.

[RBU08] S. Ramani, T. Blu, and M. Unser. Monte-
Carlo SURE: a black-box optimization of
regularization parameters for general de-
noising algorithms. IEEE Trans. Image
Process., 17(9):1540–1554, 2008.

[SBFA17] E. Soubies, L. Blanc-Féraud, and
G. Aubert. A unified view of exact
continuous penalties for `2-`0 minimiza-
tion. SIAM J. Optim., 27(3):2034–2060,
2017.

9



[See08] M. W. Seeger. Cross-validation optimiza-
tion for large scale structured classifica-
tion kernel methods. J. Mach. Learn. Res.,
9:1147–1178, 2008.

[SJNS19] Y. Sun, H. Jeong, J. Nutini, and
M. Schmidt. Are we there yet? manifold
identification of gradient-related proximal
methods. In AISTATS, volume 89, pages
1110–1119, 2019.

[SLA12] J. Snoek, H. Larochelle, and R. P. Adams.
Practical bayesian optimization of machine
learning algorithms. In Advances in neu-
ral information processing systems, pages
2951–2959, 2012.

[SR65] L. R. A. Stone and J.C. Ramer. Estimating
WAIS IQ from Shipley Scale scores: An-
other cross-validation. Journal of clinical
psychology, 21(3):297–297, 1965.

[Ste81] C. M. Stein. Estimation of the mean of
a multivariate normal distribution. Ann.
Statist., 9(6):1135–1151, 1981.

[Tib96] R. Tibshirani. Regression shrinkage and
selection via the lasso. J. R. Stat. Soc. Ser.
B Stat. Methodol., 58(1):267–288, 1996.

[TT11] R. J. Tibshirani and J. Taylor. The solu-
tion path of the generalized lasso. Ann.
Statist., 39(3):1335–1371, 2011.

[TY09] P. Tseng and S. Yun. Block-coordinate
gradient descent method for linearly con-
strained nonsmooth separable optimiza-
tion. J. Optim. Theory Appl., 140(3):513,
2009.

[VDP+13] S. Vaiter, C.-A. Deledalle, G. Peyré,
C. Dossal, and J. Fadili. Local behavior
of sparse analysis regularization: Applica-
tions to risk estimation. Appl. Comput.
Harmon. Anal., 35(3):433–451, 2013.

[VDP+17] S. Vaiter, C.-A. Deledalle, G. Peyré, J. M.
Fadili, and C. Dossal. The degrees of free-
dom of partly smooth regularizers. Ann.
Inst. Stat. Math., 69(4):791–832, 2017.

[YL06] M. Yuan and Y. Lin. Model selection
and estimation in regression with grouped
variables. J. R. Stat. Soc. Ser. B Stat.
Methodol., 68(1):49–67, 2006.

[ZH05] H. Zou and T. J. Hastie. Regularization
and variable selection via the elastic net.
J. R. Stat. Soc. Ser. B Stat. Methodol.,
67(2):301–320, 2005.

[Zha10] C.-H. Zhang. Nearly unbiased variable
selection under minimax concave penalty.
Ann. Statist., 38(2):894–942, 2010.

[ZHT07] H. Zou, T. J. Hastie, and R. Tibshirani.
On the “degrees of freedom” of the lasso.
Ann. Statist., 35(5):2173–2192, 2007.

[Zou06] H. Zou. The adaptive lasso and its ora-
cle properties. J. Amer. Statist. Assoc.,
101(476):1418–1429, 2006.

10



A Proofs

A.1 Proof of Proposition 1

We start by a lemma on the weak derivative of the soft-thresholding.

Lemma 1. The soft-thresholding ST : R × R+ 7→ R defined by ST(t, τ) = sign(t) · (|t| − τ)+ is weakly
differentiable with weak

∂2 ST(t, τ) = 1{|t|>τ} , (17)

and

∂2 ST(t, τ) = − sign(t) · 1{|t|>τ} , (18)

where

1{|t|>τ} =

{
1, if |t| > τ,

0, otherwise.
(19)

Proof. See [DVFP14, Proposition 1]

Proof. (Proposition 1, Lasso ISTA) The soft-thresholding is differentiable almost everywhere (a.e.), thus Equa-
tion (10) can be differentiated a.e. thanks to the previous lemma, and for any α > 0

Ĵ=


1{|β̂1|>τ}

...
1{|β̂p|>τ}

� (Idp−
1

α
X>X

)
Ĵ−

neλ

α


sign(β̂1)1{|β̂1|>τ}

...
sign(β̂p)1{|β̂p|>τ}

 .

Inspecting coordinates inside and outside the support of β̂ leads to:{
ĴŜc = 0

ĴŜ = ĴŜ − 1
αX
>
:,Ŝ
X:,ŜĴŜ − neλ

α sign β̂Ŝ .
(20)

Rearranging the term of Equation (20) it yields:

X>
:,Ŝ
X:,ŜĴŜ = −neλ sign β̂Ŝ (21)

ĴŜ = −neλ
(
X>

:,Ŝ
X:,Ŝ

)−1
sign β̂Ŝ . (22)

(Proposition 1, Lasso BCD)
The fixed point equations for the BCD case is

β̂j = ST

(
β̂j −

1

‖X:j‖22
X>:j (Xβ̂j − y),

neλ

‖X:j‖22

)
. (23)

As before we can differentiate this fixed point equation Equation (23)

Ĵj = 1{|β̂j|>τ} ·
(
Ĵj −

1

‖X:j‖22
X>:jXĴ

)
− neλ

‖X:j‖22
sign (β̂j)1{|β̂j|>τ} , (24)

leading to the same result.

11



A.2 Proof of Proposition 2 in the ISTA case
Proof. (Lasso case, ISTA) In Algorithm 3, β(k) follows ISTA steps, thus (β(k))l∈N converges toward the solution
of the Lasso β̂. Let Ŝ be the support of the Lasso estimator β̂, and ν(Ŝ) > 0 the smallest eigenvalue of X>

:,Ŝ
X:,Ŝ .

Under uniqueness assumption proximal gradient descent (a.k.a. ISTA) achieves sign identification [HYZ08],
i.e., there exists k0 ∈ N such that for all k ≥ k0 − 1:

signβ(k+1) = sign β̂ . (25)

Recalling the update of the Jacobian J for the Lasso solved with ISTA is the following:

J (k+1) =
∣∣∣signβ(k+1)

∣∣∣�(Id− 1

‖X‖22
X>X

)
J (k) − neλ

‖X‖22
signβ(k+1) ,

it is clear that J (k) is sparse with the sparsity pattern β(k) for all k ≥ k0. Thus we have that for all k ≥ k0:

J (k+1)

Ŝ
= J (k)

Ŝ
− 1

‖X‖22
X>

:,Ŝ
XJ (k) − neλ

‖X‖22
sign β̂Ŝ

= J (k)

Ŝ
− 1

‖X‖22
X>

:,Ŝ
X:,ŜJ

(k)

Ŝ
− neλ

‖X‖22
sign β̂Ŝ

=

(
IdŜ −

1

‖X‖22
X>

:,Ŝ
X:,Ŝ

)
J (k)

Ŝ
− neλ

‖X‖22
sign β̂Ŝ . (26)

One can remark that Ĵ defined in Equation (11), satisfies the following:

ĴŜ =

(
IdŜ −

1

‖X‖22
X>

:,Ŝ
X:,Ŝ

)
ĴŜ −

neλ

‖X‖22
sign β̂Ŝ . (27)

Combining Equations (26) and (27) and denoting ν(Ŝ) > 0 the smallest eigenvalue of X>
Ŝ
XŜ , we have for all

k ≥ k0:

J (k+1)

Ŝ
− ĴŜ =

(
IdŜ −

1

‖X‖22
X>

:,Ŝ
X:,Ŝ

)(
J (k)

Ŝ
− ĴŜ

)
‖J (k+1)

Ŝ
− ĴŜ‖2 ≤

(
1− ν(Ŝ)

‖X‖22

)
‖J (k)

Ŝ
− ĴŜ‖2

‖J (k)

Ŝ
− ĴŜ‖2 ≤

(
1− ν(Ŝ)

‖X‖22

)k−k0
‖J (k0)

Ŝ
− ĴŜ‖2 .

Thus the sequence of Jacobian
(
J (k)

)
k∈N converges linearly to Ĵ once the support is identified.

Proof. (wLasso case, ISTA) Recalling the update of the Jacobian J ∈ Rp×p for the wLasso solved with ISTA
is the following:

J (k+1) =
∣∣∣signβ(k+1)

∣∣∣�(Id− 1

‖X‖22
X>X

)
J (k)

− neλ

‖X‖22
diag

(
signβ(k+1)

)
, (28)

The proof follows exactly the same steps as the ISTA Lasso case to show convergence in spectral norm of the
sequence (J (k))k∈N toward Ĵ .

12



A.3 Proof of Proposition 2 in the BCD case

The goal of the proof is to show that iterations of the Jacobian sequence (J (k))k∈N generated by the Block
Coordinate Descent algorithm (Algorithm 3) converges toward the true Jacobian Ĵ . The main difficulty of the
proof is to show that the Jacobian sequence follows an asymptotic Vector AutoRegressive (VAR, see [MVGS19,
Thm. 10] for more detail), i.e., the main difficulty is to show that there exists k0 such that for all k ≥ k0:

J (k+1) = AJ (k) +B , (29)

with A ∈ Rp×p a contracting operator and B ∈ Rp. We follow exactly the proof of [MVGS19, Thm. 10].

Proof. (Lasso, BCD)
Let j1, . . . , jS be the indices of the support of β̂, in increasing order. As the sign is identified, coefficients

outside the support are 0 and remain 0. We decompose the k-th epoch of coordinate descent into individual
coordinate updates: Let β̃(0) ∈ Rp denote the initialization (i.e., the beginning of the epoch, ), β̃(1) = β(k) the
iterate after coordinate j1 has been updated, etc., up to β̃(S) after coordinate jS has been updated, i.e., at the
end of the epoch (β̃(S) = β(k+1)). Let s ∈ S, then β̃(s) and β̃(s−1) are equal everywhere, except at coordinate
js:

J̃ (s)
js

= J̃ (s−1)
js

− 1

‖X:,js‖2
X>:,jsXJ̃ (s−1) − 1

‖Xjs‖2
signβjs after sign identification we have: (30)

= J̃ (s−1)
js

− 1

‖X:,js‖2
X>:,jsX:,ŜJ̃

(s−1)
Ŝ

− 1

‖X:,js‖2
sign β̂js (31)

X:,ŜJ̃
(s)

Ŝ
=

(
Idn−

X:,jsX
>
:,js

‖X:,js‖2

)
︸ ︷︷ ︸

As

X:,ŜJ̃
(s−1)
Ŝ

− sign β̂js

‖X:,js‖2
X:,js︸ ︷︷ ︸

bs

(32)

We thus have:
X:,ŜJ̃

(S)

Ŝ
= AS . . . A1︸ ︷︷ ︸

A∈Rn×n

X̃:,ŜJ
(0)

Ŝ
+AS . . . A2b1 + · · ·+ASbS−1 + bS︸ ︷︷ ︸

b∈Rn

. (33)

After sign identification and a full update of coordinate descent we thus have:

X:,ŜJ
(t+1)

Ŝ
= AX:,ŜJ

(t)

Ŝ
+ b . (34)

Since b ⊥ Ker(Idn−A), one can apply [MVGS19, Prop. 15], i.e., ‖A‖2 = 1, however one can show that
A = A+ Ā with Ā the orthogonal projection on Ker(Idn−A) and ‖A‖2 < 1. Moreover, after sign identification
the sequence is a VAR with associated matrix A, whose spectral norm is less than 1.

Proof. (wLasso case, BCD) As for the Lasso case:

J̃ (s)
js,:

= J̃ (s−1)
js,:

− 1

‖X:,js‖2
X>:,jsXJ̃ (s−1) − 1

‖Xjs‖2
signβjsejs after sign identification we have: (35)

J̃ (s)

js,Ŝ
= J̃ (s−1)

js,Ŝ
− 1

‖X:,js‖2
X>:,jsX:,ŜJ̃

(s−1)
Ŝ,Ŝ

− 1

‖X:,js‖2
sign β̂jsejs (36)

X:,ŜJ̃
(s)

Ŝ,Ŝ
=

(
Idn−

X:,jsX
>
:,js

‖X:,js‖2

)
︸ ︷︷ ︸

As

X:,ŜJ̃
(s−1)
Ŝ,Ŝ

− sign β̂js

‖X:,js‖2
X:,js︸ ︷︷ ︸

Bs

⊗ejs (37)

X:,ŜJ̃
(S)

Ŝ,Ŝ
= AS . . . A1︸ ︷︷ ︸

A∈Rn×n

X̃:,ŜJ
(0)

Ŝ,Ŝ
+AS . . . A2B1 ⊗ e1 + · · ·+ASBS−1 ⊗ eS−1 +BS ⊗ eS︸ ︷︷ ︸

D∈Rn×p

. (38)

13



One can show that

D:,j = Πs−1
i=jAiBj . (39)

As in [MVGS19, Lemma 14], we can proove that D:,j ∈ Ker(Idn−A)⊥. As before, after sign identification the
sequence is a VAR with associated matrix A, whose spectral norm is less than 1.

B Block coordinate descent algorithms
Algorithm 3 presents the forward iteration scheme which computes iteratively the solution of the Lasso or
wLasso jointly with the Jacobian computation. This is the naive way of computing the Jacobian without taking
advantage of its sparsity. Eventually, it requires to differentiate every lines of code w.r.t. to λ and take advantage
of the BCD updates for cheap updates on the Jacobian as well.

Algorithm 3 Forward Iterdiff [DVFP14, FDFP17]

input : X, y, β(0),J (0), λ, L, niter
β = β(0)

J = J (0)

r = y −Xβ
dr = −XJ
for k = 0, . . . , niter − 1 do

for j = 0, . . . , p− 1 do
βold = βj
zj = βj + 1

‖X:,j‖2
X>:,jr

βj = ST(zj , ne
λ/ ‖X:,j‖2)

r −= X:,j(βj − βold)
if Lasso then
Jold = Jj
Jj = |signβj |

(
Jj + 1

‖X:,j‖2
X>:,jdr

)
Jj −= neλ

‖X:,j‖2
signβj

drj −= X:,j(Jj − Jold)
if wLasso then
Jold = Jj,:
Jj,: = | signβj |

(
Jj,: + 1

‖X:,j‖2
X>:,jdr

)
Jj,j −= neλj

‖X:,j‖2
signβj

drj −= X:,j(Jj − Jold)
return βniter ,J niter

(λ)

Algorithm 4 describes the backward iterative differentiation algorithm used for benchmark. Backward differ-
entiation requires the storage of every updates on β. As Figure 1 shows, this algorithm is not efficient for our
case because the function to differentiate f : R → Rp ( f : Rp → Rp, for the wLasso) has a higher dimension
output space than the input space. The storage is also an issue mainly for the wLasso case which makes this
algorithm difficult to use in practice in our context.

Algorithm 5 presents the classical BCD iterative scheme for solving the Lasso problem using the composition
of a gradient step with the soft-thresholding operator.

14



Algorithm 4 Backward Iterdiff [Dom12]

input : X, y, β(0), α, λ, L, niter
β = β(0)

for k = 0, . . . , niter − 1 do
for j = 0, . . . , p− 1 do

βold = βj
zj = βj + 1

‖X:,j‖2
X>:,jr

βj = ST(zj , ne
λ/ ‖X:,j‖2)

r −= X:,j(βj − βold)
g = 0
for k = niter down to 1 do

for j = 0, . . . , p− 1 do
if Lasso then

g −= neλ

‖X:,j‖2
αj signβ

(k)
j

αj ∗= | signβ
(k)
j |

α −= 1
‖X:,j‖2

αjX
>
:,jX

if wLasso then
gj −= neλj

‖X:,j‖2
αj signβ

(k)
j

αj ∗= | signβ
(k)
j |

α −= 1
‖X:,j‖2

αjX
>
:,jX

return βniter , g(1)

Algorithm 5 BCD for the Lasso [FHT10]

input : X, y, β(0), λ, L, niter
β = β(0)

for k = 0, . . . , niter − 1 do
for j = 0, . . . , p− 1 do

βold = βj
zj = βj + 1

‖X:,j‖2
X>:,jr

βj = ST(zj , ne
λ/ ‖X:,j‖2)

r −= X:,j(βj − βold)
return βniter

15



C Derivations for MCP
Let us remind the definition of the Minimax Concave Penalty (MCP) estimator introduced by [Zha10], also
analyzed under the name CELE0 by [SBFA17]. First of all, for any t ∈ R:

pMCP
λ,γ (t) =

{
λ|t| − t2

2γ , if |t| ≤ γλ
1
2γλ

2, if |t| > γλ .
(40)

The proximity operator of pλ,γ for parameters λ > 0 and γ > 1 is defined as follow (see [BH11, Sec. 2.1]):

proxMCP
λ,γ (t) =

{
ST(t,λ)

1− 1
γ

if |t| ≤ γλ
t if |t| > γλ .

(41)

For ourselves we choose as for the Lasso an exponential parametrization of the coefficients, for λ ∈ R and γ > 0:

β̂(λ,γ)(y) , arg min
β∈Rp

1

2n
‖y −Xβ‖22 +

p∑
j=1

pMCP
eλ,eγ (|βj |) . (42)

Update rule for Coordinate Descent Below, we provide equation to update the coefficient in the coordi-
nate descent algorithm of the MCP:

βj ← arg min
βj∈R

1

2n
‖y − βjX:,j −

∑
j′ 6=j

βj′X:,j′‖22 +

p∑
j′ 6=j

pMCP
eλ,eγ (βj′) + pMCP

eλ,eγ (βj)

= arg min
βj∈R

1

2n
‖y − βjX:,j −

∑
j′ 6=j

βj′X:,j′‖22 + pMCP
eλ,eγ (βj)

= arg min
βj∈R

‖X:,j‖22

 1

2n

βj − 1

‖X:,j‖22

〈
y −

∑
j′ 6=j

βj′X:,j′ , X:,j

〉2

+
1

‖X:,j‖22
pMCP
eλ,eγ (βj)


= arg min

βj∈R

 1

2n

βj − 1

‖X:,j‖22

〈
y −

∑
j′ 6=j

βj′X:,j′ , X:,j

〉2

+
1

‖X:,j‖22
pMCP
eλ,eγ (βj)


= arg min

βj∈R

 1

2Lj

βj − 1

‖X:,j‖22

〈
y −

∑
j′ 6=j

βj′X:,j′ , X:,j

〉2

+ pMCP
eλ,eγ (βj)

 ,with Lj ,
n

‖X:,j‖22

= proxMCP
eλ/Lj ,eγLj

(
βj −

1∥∥X2
:,j

∥∥X>:,j(Xβ − y), λ

)
. (43)

One can write the following fixed point equation satisfied by the estimator β̂, with Lj = ‖X:,j‖2 /n:

β̂j = proxMCP
eλ/Lj ,eγLj

〈y −∑
k 6=j

β̂kX:,k,
X:,j

‖X:,j‖2

〉
= proxMCP

eλ/Lj ,eγLj

(
β̂j −

1

‖X:,j‖2
X>:,j

(
Xβ̂ − y

))
. (44)

Since the MCP penalty is non-convex, the estimator may not be continuous w.r.t. hyperparameters and gradient
based hyperparameter optimization may not be theoretically justified. However we can differentiate the fixed

16



Imp. F. iterdiff. (ours) F. iterdiff. Grid-search

0 2 4
10−4

10−3

10−2

10−1

100

O
bj

ec
ti

ve
m

in
us

op
ti

m
um

rcv1 (p=19,959)

0 10 20 30
10−2

10−1

100

101

102 20news (p=130,107)

0 2 4
Time (s)

10−1

100

L
os

s
on

te
st

se
t

0 10 20 30
Time (s)

101

102

Figure 3 – Computation time for the HO of the MCP on real data Distance to “optimum” (top) and
performance (bottom) on the test set for the MCP.

point equation Equation (44) almost everywhere:

Ĵj =

(
Ĵj −

1

‖X:j‖22
X>:jXĴ

)
·
∂ proxMCP

eλ/Lj ,eγLj

∂t

(
β̂j −

1∥∥X2
:,j

∥∥X>:,j(Xβ − y)

)

+
eλ

Lj

∂ proxMCP
eλ/Lj ,eγLj

∂λ

(
β̂j −

1∥∥X2
:,j

∥∥X>:,j(Xβ − y)

)

+ eγLj
∂ proxMCP

eλ/Lj ,eγLj

∂γ

(
β̂j −

1∥∥X2
:,j

∥∥X>:,j(Xβ − y)

)
. (45)

where

∂ proxMCP
λ,γ

∂t
(t) =

{ | sign t|
1− 1

γ

, if |t| ≤ λγ
1, otherwise

, (46)

∂ proxMCP
λ,γ

∂λ
(t) =


0, if |t| ≤ λ
− sign t

1− 1
γ

, if λ ≤ |t| ≤ λγ
0, if |t| > λγ

, (47)

∂ proxMCP
λ,γ

∂γ
(t) =

{
−ST(t,λ)

(γ−1)2 if |t| ≤ λγ
0 if |t| > λγ

. (48)

Contrary to other methods, HO based algorithms do not scale exponentially in the number of hyperparameters.
Here we propose experiments on the held-out loss with the MCP estimator [Zha10], which has 2 hyperparameters
λ and γ. Our algorithm can generalize to such non-smooth proximity-based estimator.
Comments on Figure 3 (MCP, held-out criterion). Figure 3 (top) shows the convergence of the optimum on

2 datasets (rcv1 and 20news) for the MCP estimator. As before implicit forward differentiation outperforms
forward differentiation illustrating Proposition 2 and Table 1.

17



D Application to another criterion: SURE
Evaluating models on held-out data makes sense if the design is formed from random samples as it is often
considered in supervised learning. However, this assumption does not hold for certain kinds of applications
in signal or image processing. For these applications, the held-out loss cannot be used as the criterion for
optimizing the hyperparameters of a given model. In this case, one may use a proxy of the prediction risk, like
the Stein Unbiased Risk Estimation (SURE, [Ste81]). The SURE is an unbiased estimator of the prediction risk
under weak differentiable conditions. The drawback of this criterion is that it requires the knowledge of the
variance of the noise. The SURE is defined as follows: SURE(λ) = ‖y −Xβ̂(λ)‖2− nσ2 + 2σ2dof(β̂(λ)) , where
the degrees of freedom (dof [Efr86]) is defined as dof(β̂(λ)) =

∑n
i=1 cov(yi, (Xβ̂

(λ))i)/σ
2 . The dof can be seen a

measure of the complexity of the model, for instance for the Lasso dof(β̂(λ)) = ŝ, see [ZHT07]. The SURE can
thus be seen as a criterion trading data-fidelity against model complexity. However, the dof is not differentiable
(not even continuous in the Lasso case), yet it is possible to construct a weakly differentiable approximation of
it based on Finite Differences Monte-Carlo (see [DVFP14] for full details), with ε > 0 and δ ∼ N (0, Idn):

dofFDMC(y, λ, δ, ε) = 1
ε 〈Xβ̂(λ)(y + εδ)−Xβ̂(λ)(y), δ〉 .

We use this smooth approximation in the bi-level optimization problem to find the best hyperparameter. The
bi-level optimization problem then reads:

arg min
λ∈R

‖y −Xβ̂(λ)‖2 + 2σ2dofFDMC(y, λ, δ, ε) (49)

s.t. β̂(λ)(y) ∈ arg min
β∈Rp

1
2n‖y −Xβ‖22 + eλ‖β‖1

β̂(λ)(y + εδ) ∈ arg min
β∈Rp

1
2n‖y + εδ −Xβ‖22 + eλ‖β‖1

Note that solving this problem requires the computation of two (instead of one for the held-out loss) Jacobians
w.r.t. λ of the solution β̂(λ) at the points y and y + εδ.

(Lasso, SURE criterion). To investigate the estimation performance of the implicit forward differentiation in
comparison to the competitors described above, we used as metric the (normalized) Mean Squared Error (MSE)
defined as MSE , ‖β̂ − β∗‖2/‖β∗‖2. The entries of the design matrix X ∈ Rn×p are i.i.d. random Gaussian
variables N (0, 1). The number of rows is fixed to n = 100. Then, we generated β∗ with 5 non-zero coefficients
equals to 1. The vector y was computed by adding to Xβ∗ additive Gaussian noise controlled by the Signal-to-
Noise Ratio: SNR , ‖Xβ∗‖/‖y −Xβ∗‖ (here SNR = 3). Following [DVFP14], we set ε = 2σ/n0.3. We varied
the number of features p between 200 and 10,000 on a linear grid of size 10. For a fixed number of features,
we performed 50 repetitions and each point of the curves represents the mean of these repetitions. Comparing
efficiency in time between methods is difficult since they are not directly comparable. Indeed, grid-search and
random-search discretize the HO space whereas others methods work in the continuous space which is already
an advantage. However, to be able to compare the hypergradient methods and possibly compare them to the
others, we computed the total amount of time for a method to return its optimal value of λ. In order to have a
fair comparison, we compared 50 evaluations of the line-search for each hypergradient methods, 50 evaluations
of the Bayesian methods and finally 50 evaluations on fixed or random grid. We are aware that the cost of
each of these evaluations is not the same but it allows to see that our method stays competitive in time with
optimizing one parameter. Moreover we will also see that our method scales better with a large number of
hyperparameters to optimize.

Figure 4 shows the influence of the number of features on the MSE and the computation time. First, MSE
of all competitors is comparable which means that the value of β̂(λ) obtained by the different methods is
approximately the same. The only method that performs worse than the others is implicit differentiation. We
attribute this to instabilities in the matrix inversion of the implicit differentiation. Second, it can be seen that our
method has the same estimation performance as state-of-the-art methods like grid-search. This illustrates that
our approach is comparable to the others in term of quality of the estimator. Yet, its running time is the lowest
of all hypergradient-based strategies and competes with the implicit differentiation and the random-search.

18



Imp. F. Iterdiff. (ours)

Implicit

F. Iterdiff.

Grid-search

Bayesian

Random-search

200 2500 5000 7500 10000
Number of features (p)

0.20

0.25

0.30

0.35

M
S

E

200 2500 5000 7500 10000
Number of features (p)

100

101

102

T
im

e
(s

)
Figure 4 – Lasso: estimation performance. Estimation Mean Squared Error (left) and running time (right)
as a function of the number of features for the Lasso model.

(Weighted Lasso vs Lasso, SURE criterion). As our method leverages the sparsity of the solution, it can be
used for HO with a large number of hyperparameters, contrary to classical forward differentiation. The weighted
Lasso (wLasso, [Zou06]) has p hyperparameters and was introduced to reduce the bias of the Lasso. However
setting the p hyperparameters is impossible with grid-search.

Figure 5 shows the estimation MSE and the running time of the different methods to obtain the hyperpa-
rameter values as a function of the number of features used to simulate the data. The simulation setting is here
the same as for the Lasso problems investigated in Figure 4 (n = 100, SNR = 3). We compared the classical
Lasso estimator and the weighted Lasso estimator where the regularization hyperparameter was chosen using
implicit forward differentiation and the forward iterative differentiation as described in Algorithm 3. Equa-
tion (4) is not convex for the weighted Lasso and a descent algorithm like ours can be trapped in local minima,
crucially depending on the starting point λinit. To alleviate this problem, we introduced a regularized version
of Equation (4):

arg min
λ∈R

C
(
β̂(λ)

)
+ γ

p∑
j

λ2j

s.t. β̂(λ) ∈ arg min
β∈Rp

, ψ(β, λ) . (50)

The solution obtained by solving Equation (50) is then used as the initialization λ(0) for our algorithm. In
this experiment the regularization term is constant γ = C(β(λmax))/10. We see in Figure 5 that the weighted
Lasso gives a lower MSE than the Lasso and allows for a better recovery of β∗. This experiment shows that the
amount of time needed to obtain the vector of hyperparameters of the weighted Lasso via our algorithm is in the
same range as for obtaining the unique hyperparameter of the Lasso problem. It also shows that our proposed
method is much faster than the naive way of computing the Jacobian using forward iterative differentiation. A
maximum running time threshold was used for this experiment checking the running time at each line-search
iteration, explaining why the forward differentiation of the wLasso does not explode in time on Figure 5.

19



Lasso F. Iterdiff.

Lasso Implicit

Lasso Backward

Lasso Imp. F. Iterdiff. (ours)

wLasso F. Iterdiff.

wLasso Implicit

wLasso Backward

wLasso Imp. F. Iterdiff. (ours)

200 2500 5000 7500 10000
Number of features (p)

0.00

0.05

0.10

0.15

M
S

E

200 2500 5000 7500 10000
Number of features (p)

10−1

100

101

102

103

T
im

e
(s

)

Figure 5 – Lasso vs wLasso. Estimation Mean Squared Error (left) and running (right) of competitors as a
function of the number of features for the weighted Lasso and Lasso models.

E Datasets and implementation details
The code used to produce all the figures as well as the implementation details can be found in the supplementary
material in the forward_implicit/expes folder. In particular in all experiments, for our algorithm, implicit
forward differentiation, the size of the loop computing the Jacobian is fixed: n_iter_jac = 100. Reminding
that the goal is to compute the gradient:

Ĵ>(λ)∇C
(
β̂(λ)

)
, (51)

we break the loop if
‖(J (k+1) − J (k))∇C(β̂(λ))‖ ≤ ‖∇C(β̂(λ))‖ × εjac , (52)

with εjac = 10−3. All methods benefit from warm start.

E.1 Details on Figure 1
Figure 1 is done using synthetic data. As described in Appendix D, X ∈ Rn×p is a Toeplitz correlated matrix,
with correlation coefficient ρ = 0.9, (n, p) = (1000, 2000). β ∈ Rp is chosen with 5 non-zero coefficients
chosen at random. Then y ∈ Rn is chosen to be equal to Xβ contaminated by some i.i.d. random Gaussian
noise, we chose SNR = 3. For Figure 1 all the implementation details can be found in the joint code in
the forward_implicit/examples/plot_time_to_compute_single_gradient.py file. Figure 1 shows the time
of computation of one gradient and the distance to ”optimum”. For this figure we evaluated the gradient in
λ = λmax − ln(10). The ”optimum” is the gradient obtained using the implicit differentiation method.

E.2 Details on Figure 2
Let us first begin by a description of all the datasets and where they can be downloaded.

20



rcv1. The rcv1 dataset can be downloaded here: https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/multilabel.html#rcv1v2%20(topics;%20subsets). The dataset contains n = 20, 242 samples and
p = 19, 959 features.

20news. The 20news dataset can be downloaded here https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/multiclass.html#news20. The dataset contains n = 11, 314 samples and p = 130, 107
features.

finance. The finance (E2006-log1p on libsvm) dataset can be downloaded here: https://www.csie.ntu.
edu.tw/~cjlin/libsvmtools/datasets/regression.html#E2006-log1p. The dataset contains n = 16, 087
samples and p = 1, 668, 737 features.

All the implementation details can be found in the code: forward_implicit/expes/main_lasso_pred.py.

E.3 Details on Figure 4
Figure 4 was performed using simulated data. The matrixX ∈ Rn×p was obtained by simulated n×p i.i.d. Gaus-
sian variables N (0, 1). The number of rows was fixed at n = 100 and we changed the number of columns p
from 200 to 10,000 on a linear grid of size 10. Then , we generated β∗ with 5 coefficients equal to 1 and the
rest equals to 0. The vector y is equal to Xβ∗ contaminated by some i.i.d. random Gaussian noise controlled
by a SNR value of 3. We performed 50 repetitions for each value of p and computed the average MSE on these
repetitions. The initial value for the line-search algorithm was set at λmax +ln(0.7) and the number of iterations
for the Jacobian at 500 for the whole experiment. All the implementation details can be found in the code :
forward_implicit/expes/main_lasso_est.py.

E.4 Details on Figure 5
Figure 5 was performed using the same simulating process as described above only this time we performed only
25 repetitions for each value of p. We had to deal with the fact that Equation (4) is not convex for the weighted
Lasso which means that our line-search algorithm could get stuck in local minima. In order to alleviate this
problem, we introduced Equation (50) to obtain an initial point for the line-search algorithm. We chose the
regularization term to be constant and equals to C(β(λmax))/10. We used a time treshold of 500 seconds which
was hit only by the forward differentiation algorithm for the wLasso. The details about this experiment can be
found in the code : forward_implicit/expes/main_wLasso.py.

21

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html#rcv1v2%20(topics;%20subsets)
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multilabel.html#rcv1v2%20(topics;%20subsets)
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#news20
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html#news20
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html#E2006-log1p
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html#E2006-log1p

	Introduction
	Background
	Problem setting
	Implicit differentiation (smooth case)
	Implicit differentiation (non-smooth case)

	Hypergradients for Lasso-type problems
	Implicit differentiation
	Link with iterative differentiation

	Experiments
	Application to held-out loss

	Proofs
	Proof of prop:closedformjaclasso
	Proof of prop:convergenceiterdiff in the ISTA case
	Proof of prop:convergenceiterdiff in the BCD case

	Block coordinate descent algorithms
	Derivations for MCP
	Application to another criterion: SURE
	Datasets and implementation details
	Details on fig:introinfluniter
	Details on fig:Lassotraintestperf
	Details on fig:lassoestimation
	Details on fig:LassovswLasso


