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Abstract
The lack of transparency of neural networks is a significant
disadvantage, limiting their interpretability and their prac-
tical applications. The Layer-wise Relevance Propagation
is a technique building heat-maps representing the rele-
vance of each input in the model’s decision. The relevance
spreads backward from the last to the first layer of the Deep
Neural Network. With those kinds of methods, deep neural
networks are no longer black boxes and the contribution
of each input element can be determined. However, Layer-
wise Relevance Propagation has mostly be tested on net-
work without batch normalization layers, in this work we
suggest a method that adapts Layer-wise Relevance Propa-
gation technique to normalization layers. Specifically, we
build an equivalent network fusing normalization layers
and convolutional or fully connected layers. Heat-maps ob-
tained with our method on MNIST, CIFAR-10 and Image-
Net data-sets are more accurate than the state of the art
for convolutional layers. Our study also advises against
using Layer-wise Relevance Propagation with networks in-
cluding a combination of connected layers and normaliza-
tion layers.

Keywords
Layer-wise relevance propagation, Batch normalization,
Convolutional neural networks, Fully-connected neural
network.

1 Introduction
Neural networks are nonlinear models showing high per-
formances on various problems like computer vision [15,
8, 16], speech synthesis [38], material science and quantum
physics [22, 4, 29] or even cancer research [2, 13]. Never-
theless, they are not easily interpretable and until recently
DNN were considered as black boxes [19]. The inner wor-
king of these models is hard to understand, indeed DNN
are complex models formed with multiple connections bet-
ween neurons combined with nonlinear operations. Thus,
human expert cannot perform critical analysis and the re-
sults provided by those models as good as they can be, must

be trusted blindly. Explainable Artificial Intelligence (XAI)
is developed to overcome this issue.
Multiple interests of interpretability can be found [28].
Firstly, for delicate domains as autonomous car [3] or me-
dical diagnosis [2] consequences of a mistake can be disas-
trous. In such cases, before delivering any result, one must
ensure that the classifier works as expected and takes de-
cisions based on relevant information [36]. Then, interpre-
tability also enables to improve a classifier by addition of
human experience i.e., to analyze the learning algorithm’s
errors. And the reverse operation, i.e., learning from the
model, opens interesting perspectives. For instance, the Al-
phaGo algorithm [33] played during its game moves that
humans are not used to. Finally, when neural networks
achieve good results for a task a human cannot perform,
specifically in physics or chemical areas, interpretability
would therefore enable to discover new principles as fin-
ding new genes linked to cancer or identify binding sites
[30].
Several methods have been developed in order to deal
with the explainability of DNN. First introduced methods
build saliency maps [34] or visualizations of patches that
maximally activate neurons [6]. Other suggested gradient
methods to explain reasons why images were misclassi-
fied [31]. LIME [24] or SHAP [20] justify the predictions
though an explainable classifier locally around the predic-
tion. DeepLIFT [32] decomposes the prediction by assi-
gning the differences of contribution scores between the
activation of each neuron to its reference activation. Layer-
wise relevance propagation (LRP) is based on the deep
Taylor decomposition [21], decomposing the activation of
a neuron as the contributions from its outputs. LRP has
shown interesting results, allowing interpretation on va-
rious neural networks [26, 21, 11].
Contributions. In this work, we propose an improvement
of the Layer-Wise Propagation (LRP) method [1]. LRP is
a post-hoc interpretability method, implemented after the
model training [24]. It explains the model decisions one
sample at a time. LRP propagates backward the relevance
though all layers from output results to input features.
The propagation follows different rules for convolutional



layers, pooling layers, etc. However, it is not clear how to
apply it to normalization layers [23], and in some recent
work, normalization layers are bypassed during the rele-
vance back-propagation [21]. We develop a method to ea-
sily include normalization layers to LRP method. We prove
that properly fusing batch normalization (BN) [12] with
another layer enables to integrate BN rather than bypas-
sing it. We also show the extension of this method to other
normalization layers. To assess the improvement brought
by our method, it is tested on three data-sets MNIST [17],
CIFAR-10 [14] and ImageNet [5]. Different networks ar-
chitecture including fully connected neural networks[25]
and convolutional neural networks [18] are tested. We de-
monstrate that relevance computation with BN obtains bet-
ter results than ignoring BN for convolutional neural net-
works. Relatively to fully connected network, we reserve
our conclusion since LRP seems not to be compatible with
fully connected networks combined with batch normaliza-
tion.
Related work. There are few works on the integration of
batch normalization for method decomposing and crea-
ting explanation based on the linearization of the respec-
tive compounds. One paper has already taken on the sub-
ject of batch normalization layers with the LRP technique
[11]. In this paper, the performance of three deep neural
network classifiers (MobileNet, ResNet and DenseNet) are
analyzed testing different decomposition rules adapted for
LRP. From this analysis, a new batch normalization rule
is proposed to provide more robust performances across
various deep network architectures. More generally, some
approaches have been proposed but not tested as absorbing
BN and the adjacent layer without changing the function,
or considering BN as one or two linear layers [27].

2 Background and Notation
We consider supervised learning tasks. Since LRP only
processes samples one by one, notation of input features
` is simply referred as x(`). The weights and biases bet-
ween neuron i belonging to layer l, x(`)i and neuron j in to
layer (`+1), x(`+1)

j are respectively written down w(`,`+1)
ij

and b(`,`+1)
j . Also, ReLU function i.e., max(., 0) is written

(.)+.

2.1 Fully connected layer
Fully connected layers connect every neuron of one layer
to every neuron of the next layer. Equation 1 gives the ex-
pression of the output neurons as a function of the input
neurons and the fully connected layer parameters.

∀`,∀i,∀j, x(`+1)
j =

∑
i

w
(`,`+1)
ij x

(`)
i + b`j (1)

2.2 Convolutional Layer
Unlike fully connected layers, convolutional layers contain
a set of filters. Each filter is convolved with the input layer
(`) to compute an activation map. The filter is slided across

the width and height of the input and the dot products bet-
ween the input and the filter are computed at every spatial
position (2).

x(`+1) = w(`,`+1) ∗ x(`) + b(`,`+1) (2)

2.3 Batch Normalization
Batch normalization [12], is a trick commonly used to
improve the training of deep neural networks, accelera-
ting learning phase and showing better accuracy. Its suc-
cess leads various deep learning structure to incorporate
batch normalization [7] [10]. During the learning phase,
batch normalization avoids problems related to back-
propagation. It prevents the gradient from explosion and
the vanishing gradient problem by keeping data in boun-
ded intervals. During the test phase, batch normalization
is performed using constant variance and constant mean.
Equation 3 expresses the output x(`)i norm of a BN layer (`)
as a function of the input x(`)i during the test phase.

x
(`)
i norm = γ(`)

x
(`)
i − µ

(`)
run

σ
(`)
run

+ β(`) (3)

with γ(`) and β(`) respectively weights and biases of the
layer.

2.4 Layer-wise Relevance Propagation
Method. LRP is applied once the network is learned. It
consists in finding the relevance Ri of each input feature
x
(1)
i , propagating backward the relevance information from

the output until the input. The relevance obeys to conserva-
tion rule from one layer to another (4).

∀`,
∑
i

R
(`)
i =

∑
j

R
(`+1)
j (4)

Equation 5 translates R(`)
i , the relevance of neuron i in

layer `, as the sum of all the contributions of neurons com-
municating with it.

∀`,∀i, R(`)
i =

∑
j

R
(`+1)
i←j (5)

Several rules are established satisfying equations 4 and 5
to propagate the relevance from a layer to the previous one
[23]. In this paper we will use two of them depending on
the input domain.

— Rule 1 : If the neuron value x(`)i is positive. The
relevance of the neuron i of the layer ` is computed
as in equation 6

Ri
(`) =

∑
j

xi
(`)wij

(`,`+1)+∑
k xk

(`)wkj
(`,`+1)+

Rj
(`+1) (6)

with w(`,`+1)
ij

+
= max(0, w

(`,`+1)
ij )

— Rule 2 : If the neuron values x(`)i range between `i
and hi



Ri
(`)

=
∑
j

kij`Rj
(`+1)

kij` =
x
(`)
i wij

(`,`+1) − `i
(`)wij

(`,`+1)+ − hi
(`)wij

(`,`+1)−∑
k xk

(`)wkj
(`,`+1) − `k(`)wkj

(`,`+1)+ − hk
(`)wkj

(`,`+1)−

(7)

with wij
(`,`+1)+ = max(0, wij

(`,`+1)) and wij
(`,`+1)− =

min(0, wij
(`,`+1))

Relevance R computed with LRP is pictured as a heat-map
i.e., a visualization technique highlighting pixels which
support the classification decisions [34] [1].

Practical Considerations. The input of LRP corres-
ponds to the raw output of the network i.e., before Soft-
Max activation function. The last activation function is a
SoftMax the others chosen nonlinear activation functions
are ReLU functions. Therefore, for all l 6= 0 and for all
i, x(`)i > 0 and the relevance is propagated according to
equation 6. As we work with images, pixel inputs x(0)i are
bounded between 0 and 255 (or -1 and 1 if a scale operation
is applied) and rule 2 (7) is applied.
Pooling layers are easily handled, being considered as
reLU detection layers.
All biases are recommended to be either zero or negative
[23]. When the condition is not filled, biases are considered
as neurons and their contribution is added on the denomi-
nator of equation 6 or 7 [21].
All results shown are part of the test set.

3 Batch normalization in the LRP
relevance computation

Various pre-trained networks [37] [9] [10] include normali-
zation layers and show good results on various tasks. Such
networks support LRP with approximation, but we expect
better results with a suitable way to handle BN layers with
LRP. We propose a new method to obtain the relevance
heat-maps of a DNN classifier with BN layers.
The normalization layer is applied, before or after the acti-
vation. The general idea of our method is to fuse the batch
normalization layer with the closest convolutional or fully
connected layer (see Figure 1) into a single convolutional
or fully connected layer simply by modifying their para-
meters.wij

(`,`+1)′ and bij(`,`+1)′ are the parameters of this
new layer.

3.1 Fully connected neural network
Combining the two equations 1 and 3, we show that the
combination of a BN layer and a FC layer is equivalent to
a single fully connected layer by adapting its weight and
bias parameters.

BN after activation. (see 1, graph a))
If a BN fuses with a FC layer, equation 8 describes the new
propagation rule.

∀`,∀j, xj(`+1) =
∑
i

wij
(`,`+1)

(
γ
(`)
i

xi
(ell) − µi

(`)
run

σi
(`)

run

+ β(`)

)
+ bj

(`,`+1)

(8)

FIGURE 1 – Fusion of the normalization layer with ano-
ther layer in the two different configurations a) BN after
activation b) BN before activation

∀`,∀j, xj(`+1) =
∑
i

[
γi

(`)wij
(`,`+1)

σi
(`)

run

]
xi

(`)

+

[
bj

(`,`+1) +
∑
i

wij
(`,`+1)

(
β(`) − γi

(`)µi
(`)

run

σi
(`)

run

)] (9)

By identification, we find weight and bias terms of the
fuse layer respectively in the first and second bracket of
equation 9.

BN before activation. (see 1, graph b))
Similarly, we find out that a FC layer and a BN layer can be
fused into a single FC layer with the following parameters.

wij
(`,`+1)′ =

γj
(`+1)wij

(`,`+1)

σj(`+1)
run

(10)

b
(`,`+1)
j

′
= βj

(`+1) + γj
(`+1) bj

(`,`+1) − µj
(`+1)

run

σj(`+1)
run

(11)

3.2 Convolutional neural network
When the batch normalization is combined with a fully
connected layer, all input neurons receive a different nor-
malization i.e., γ(`), β(`), σ(`+1)

run and µ
(`)
run are vectors

which size is equal to the neurons vector’s one. With a
convolutional layer, the same normalization is applied to
all neurons of a channel (see Figure. 2). BN parameters are
simplified :

∀i,γi(`) = γ(`)

βi
(`) = β(`) (12)

µi
(`)

run = mu(`)run

σi
(`)

run = σ(`)
run

Consequently, we rewrite equation 3 removing unneces-
sary terms.



FIGURE 2 – Scheme of a batch normalization applied be-
fore a convolutional layer

BN after activation. Using equation 2 and 3 and pro-
ceeding similarly to the previous sections, a convolutional
layer combined with a BN layer can be reduced to a single
convolution layer which weights and biases are expressed
as :

w(`,`+1)′ =
w(`,`+1)γ(`)

σ(`)
run

(13)

b(`,`+1)′ = b(`,`+1) + w(`,`+1)(β(`) − γ(`)µ(`)
run

σ(`)
(14)

BN before activation. Similarly, if we apply BN bet-
ween the convolution and the non-linearity, the weights and
biases of the resulting fused convolutional layer are expres-
sed as :

w(`,`+1)′ =
w(`,`+1)γ(`)

σ
(`)
run

(15)

b(`,`+1)′ = β(`+1) + γ(`+1) b
(`,`+1) − µ(`+1)

run

σ(`+1)
(16)

4 More complex normalizations for
convolution layers - from convolu-
tional to fully connected layer

Batch normalization at test time consists in applying the
same mean and variance for all coefficients of an input (see
Figure 2). For other normalizations, parameters (mean, va-
riance etc.) may not be constant. The simplifications ex-
pressed in equation 12 are no longer practical. Another way
to proceed must be found.
We reduce the convolutional layer to a fully connected
layer with weight Wfc and bias Bfc and then apply the
known results on FC. In practice two dimensional inputs
and outputs of the layer are flatten (see Figure 3). And a
weight matrix of the new created fully connected layer is
filled with the coefficients of the different kernels.
For each connection between an input flatten channel
and an output flatten channel, a weight matrix is created.
Given c0, c1 respectively the number of input and output
channels, for all i ∈ [1, c0] and for all j ∈ [1, c1], a weight

FIGURE 3 – Example of a convolution layer and its equi-
valent as a fully connected layer after a flatten operation

matrix wij and a bias vector bj are filled. The final weight
matrix and bias vector are the concatenation of those
sub-matrix :

Wfc =


w1,1 w1,2 · · · w1,c0

w2,1 w2,2 · · · w2,c0

...
...

. . .
...

wc1,1 wc1,2 · · · wc1,c0

 and Bfc =


b1
b2
...
bc1,


The matrix wij and vector bj coefficients are expressed
thanks to kernel coefficients of the concerned couple of in-
put channel i and output channel j. To illustrate, we consi-
der a convolutional layer with an input channel with 5*5
images and a 2*2 kernel, no padding and no stride. The
coefficients of the kernel are written αi and the pixels are
noted pi. The convolution can be drawn as :

Wfc =


p1 p2 · · · p5
p6 p7 · · · p10
...

...
. . .

...
p21 p22 · · · p25

 ∗
(
α1 α2

α3 α4

)

In this case, the sub-matrix weight matrix wij is

wij =



α1 α2 0 0 0 α3 α4 0 · · · 0
0 α1 α2 0 0 0 α3 α4 · · · 0
0 0 α1 α2 0 0 0 α3 · · · 0
0 0 0 α1 α2 0 0 0 · · · 0
0 0 0 0 0 α1 α2 0 · · · 0
...

...
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 0 0 · · · α4


Performing those operations, we can convert any convolu-
tion layer into a fully connected layer and then apply the
different results found on FC layers.
After briefly introducing the LRP method, we have seen
how it can theoretically be adapted to batch normalization.
In the next section, several experiments are conducted to
analyze the impact of taking the batch normalization into
account on both fully connected and convolutional layer.
The previous section has also shown how other normaliza-
tions can be used when working with LRP, this last part is
not studied experimentally.



5 Experiments
In this section, we show the results obtained by ap-
plying our method to include batch normalization into the
LRP method. Three data-sets are tested with our method.
MNIST is an interesting data-set for this work, because it is
simple enough to achieve good results with fully connec-
ted layer but as soon as entrance data are two dimensio-
nal images, it can also be treated with a convolutional net-
work. However, MNIST data-set is particularly simple, the
method is also tested on other data-sets (CIFAR-10 and
ImageNet) to consolidate our results. Because CIFAR-10
are more complex data, a network composed with fully
connected layers will not give usable results. Consequently,
only convolutional layers are studied. However, for our
task, MNIST and CIFAR-10 are trivial data-sets since the
relevance largely corresponds to the foreground object in
the image leading us to a more extensive study on the Ima-
geNet data-set.
Images from the two first data-sets are normalized such as
all pixel values are contained in [-1,1] (see equation 17).

∀i,∀j, xij ∈ [0, 255], xijnorm =
xij

255 − 0.5

0.5
(17)

The classical normalization for ImageNet is performed, the
RGB values of images are normalized using [0.485, 0.456,
0.406] as mean and [0.229, 0.224, 0.225] as standard de-
viation.
With toy data-sets, the heat-maps are expected to display
the same pixels as a human eye would do. A satisfying ex-
plainable method creates a heat-map in which the contours
and important shapes of objects are intensely red while
background elements and insignificant detailed are white.
The identity rule for batch- normalization layers (i.e., by-
pass normalization layers) [23], it is the baseline we choose
to measure our contribution.

5.1 MNIST
Fully connected neural network. Three fully connec-
ted neural networks only composed with BN and FC layers
are studied. Fc1 is only composed with FC layers, Fc2’s
architecture is similar to Fc1 adding BN layers after acti-
vation function. Fc3 presents a little different architecture
and uses a BN layer after FC operation and before non-
linearity. Figure 4 a) and b) detail those networks.
The networks’ performances are measured with the accu-
racy criterion. All networks give good results, with an ac-
curacy between 97 and 99.24% (see Table 1).

Convolutional neural network. The procedure applied
for the fully connected network is repeated with a convo-
lutional network architecture. Two convolutional networks
are built the Conv1 with four convolutional layers, and
the Conv2 adding a batch normalization layer before every
convolutional layer. Those networks architectures are de-
tailed on Figure 4 c).
Some of the heat-maps obtained with LRP method are
shown in 5. Fc2 and Conv2 give two different heat-maps,

FIGURE 4 – Different networks configurations tested on
MNIST data-set. The a) figure is the network Fc2 with BN
layers before FC layers, Fc1 has the same architecture as
Fc2 without BN layers b) is the fully connected layer Fc3
with FC before BN layers. Finally network c) is the archi-
tecture of the convolutional network Conv2, Conv1 corres-
ponds to the architecture of conv2 without the BN layers

Name Type BN in NN Position of BN Accuracy
Fc1 FC No 0.9781
Fc2 FC Yes Before FC 0.9742
Fc3 FC Yes After FC 0.9831

Conv1 Conv No 0.9903
Conv2 Conv Yes Afer conv 0.9924

TABLE 1 – Accuracy computed on MNIST data-set

the first (Figure 5 column ’Fc2 w/ BN’ or ’Conv2 w/ BN’)
using the method developed in this paper, the other (Figure
5 column ’Fc2 w/o BN’ or ’Conv2 w/o BN’) bypassing the
normalization layers i.e., the baseline.

5.2 CIFAR-10
The chosen network architecture for the study of CIFAR-
10 is composed with seven convolutional layers, each of
them is directly followed by a batch normalization layer. It
ends with a fully connected layer as it is usually done in
classification problems involving convolutional neural net-
works. Four pooling layers are added to down sampling the
intermediate results. More complete information on kernel
sizes, and pooling layers location is available at Figure 6.
The network reaches an accuracy of 0.9378 on the test set.
It leads to two different heat-maps to compare : the first one
gives the result with our method meaning considering BN
layers while the second one bypasses the BN layers.
Some result examples are shown in Figure 7.

5.3 ImageNet
Concerning the last studied data-set, we use a pre-trained
convolutional neural network VGG-16 [35], the detailed ar-
chitecture is the D version of the network described in the
article. In this configuration, the batch normalization layer
is placed between the convolutional layer and the nonlinear
activation function. For this model the performances achie-



FIGURE 5 – Heat-maps obtained by applying LRP to MNIST data-set through different networks. The first column Original
image is the raw image, Fc1 is the result obtained with the first FC network Fc1, Fc2 w/BN, is the heat-map obtained with
the Fc2 network architecture taking BN layers into account during the LRP phase, on the contrary Fc2 w/o BN column is
the heat-map obtained with Fc2 bypassing normalization layers while relevance backpropagation. Similarly, the heat-map
resulting from the Conv1 architecture (without BN layers) is given in column Conv1, and columns Conv2 w/o BN and
Conv2 w/o BN show respectively the Conv2 network heat-maps result with BN and bypassing BN layers for LRP.

FIGURE 6 – Configuration architecture of the network trai-
ned on CIFAR-10 data-set

ved on the test set are 26.63% top-1 error and 8.50% top-
5 error. The study configuration is close to the CIFAR-10
one’s, consequently we also generate two heat-maps, the
baseline comparison using the identity rule for the batch
normalization layers and the classical LRP rules after fu-
sing the batch normalization layer with the closest convo-
lutional layer. Figure 8 displays some results on ImageNet
data-set.
This previous section explains experiments run on MNIST,
CIFAR-10 and ImageNet data-sets with either fully
connected or convolutional layers. In the next section,
we discuss the results of these experiments, particularly
through the interpretation of Figures 5, 7 and 8.

5.4 Results
The analysis presented here is based on qualitative analy-
sis i.e., we compare visually the red intensity difference
between pixels of interest and pixels belonging to the back-
ground.

Better results obtained with convolutional layers than
fully connected layers. Globally, convolutional layers
(see Figure 5, columns "Conv1", "Covn2 w/BN" and
"Conv2 w/o BN") give better results than fully connected
(see Figure 5, columns "Fc1", "Fc2 w/BN" and "Fc2 w/o
BN") layers. Relevance computed with convolutional net-
works marks more the difference between background and

figures. This is a logical conclusion since convolutional
networks give better results and there is a strong connec-
tion between LRP heat-map quality and network efficiency.
[11].

Using BN with fully connected layer provides poor re-
sults for the relevance. Concerning the fully connected
network, the network learned without batch normalization
layer captures a good relevance information (see Figure 5,
column Fc1).
The results on the network learned with batch normali-
zation layers are bad considering batch normalization or
not during the relevance phase (see Figure 5 columns "Fc2
w/BN" and "Fc2 w/o BN"). In this case heat-maps high-
light all pixels of the image center. The batch normaliza-
tion interferes in the relevance computation and takes pre-
cedence over the figure relevance signal.
For the fully connected network Fc3 where unlike Fc2,
batch normalization is placed after FC layers, the explicit
results are not given here but are very similar to Fc2 results.
With BN, whatever the configuration chosen i.e., placed
before or after activation in the architecture and bypassed
during relevance propagation or using our method, results
are unusable and no relevant. This might be explained by
MNIST data, information is always in the center of the
image. LRP method should be used carefully when dealing
with fully connected layers combined with batch normali-
zation layers.

Relevance obtained with a convolutional network built
without BN highlights all pixel of the object while
convolutional network with BN highlights contours.
Heat-maps computed for Fc2 bypassing BN or not during
relevance propagation are similar, in this section we will
focus only on the columns "Conv1" and "Conv2 w/BN" of
Figure 5.



FIGURE 7 – Heat-maps showing the entrance pixel rele-
vance in the decision of a convolutional network using
the LRP method. The first column Original Image is the
image form CIFRA-10 data-set studied, the Network w/
BN are results of relevance propagation with the whole mo-
del including BN layers, in comparison column Network
w/o BN shows the results for the same image still using
LRP but bypassing BN layers.

FIGURE 8 – Heat-maps showing the entrance pixel rele-
vance in the decision of a convolutional network using
the LRP method. The first column Original Image is the
image form ImageNet data-set studied, the Network w/
BN are results of relevance propagation with the whole mo-
del including BN layers, in comparison column Network
w/o BN shows the results for the same image still using
LRP but bypassing BN layers.



About convolutional networks, results are very satisfying,
and pixels of interest are well localized. However there
are differences between the two heat-maps obtained by ap-
plying LRP with a model without BN and with a model
with BN. Looking with attention at columns Conv1 and
Conv2 w/ BN of the Figure 5, it appears that the relevance
computed from Conv1 gives importance to the pixels com-
posing the figure while using a model with BN, the edges
are spotted and the internal pixels are completely white.

Relevance heat-maps computed with our method gives
more accurate results than the baseline. When BN
is employed jointly with convolutional network, relevant
pixels found with LRP are the edge of the object’s shape.
Concerning MNIST data, there are no big differences bet-
ween the two last columns of Figure 5. But little nuances
are observable specifically for figure comporting a loop
like 0 or 9, inside the loop, the red color is eased by taking
the BN into account during the LRP computation.
For CIFAR-10 and ImageNet data-sets (see Figures 7 and
8), on each example, results obtained when BN is not by-
passed are significantly better i.e., the contrast between the
background and the object is more apparent when BN is
introduced in relevance calculation.
When the image is simple (i.e., only one object on the pic-
ture) and the background is uniform : with the expla-
nation done on the ImageNet data-set, heat-map obtained
with our method are nearly perfect (Figure 8 images 4. and
10.) whereas using the identity rule to treat batch norma-
lization layers leads to noisy heat-maps, with many back-
ground pixels qualified as pixel of interest. Concerning the
CIFAR-10 data-set, different cases can be distinguished.
When the background is uniform and has a very different
color than the object, there is an improvement using BN
in relevance, but the result bypassing BN is already good,
this can be observed on the first and sixth images of Figure
7). When the background is uniform, but its color is close
to the object’s color, LRP using BN gives equivalent re-
sults to the ones obtained when the background color was
more distant. We can observe this on the third image, the
fifth, seventh, and ninth ones. On the contrary, in this case
where the difference between background and object is not
that clear, not using BN in the relevance leads to medium
result. The shape of the object is distinguishable from the
rest of the image, but the contrast between the intensity of
pixel belonging or not to the object is not pronounced.
When the image is simple (i.e., only one object on the pic-
ture) but the background is not uniform : for the CIFAR-
10 data-set, LRP without BN gives poor results as for the
frog (second image), the horse (fourth image) or deer (last
image) in Figure 7. The results for LRP taking BN into
account is not as good as the previous ones but are much
better than relevance when BN is ignored. On the contrary,
for the ImageNet data-set, heat-maps obtained bypassing
the batch normalization layer give a good explanation but
using our method improves the heat-maps and most of the
background pixels are turned off. We can observe this on

the Figure 8, images 1., 5., 6. and 9.
Finally, we study complex scenes from the ImageNet data-
set where the class of interest is melted with other objects
(e.g., Figure 8, images 2., 3. and 8.). In those cases, with
our method pixels of interest almost only belong to objects
of interest, the tape players on image 2., the saxes on image
3., the butterfly on image 7. and the nail for the image 8.
Similarly, to our previous observations, results given by-
passing the BN layer are not bad and turn on the pixels
belonging to the target classes, but the other elements in
images are also highlighted. This is particularly sensitive
on the second image of Figure 8.

6 Conclusion
In this work we propose a method to properly build
heat-maps with LRP on network containing normaliza-
tion. From the combination of a fully connected layer or
a convolutional layer and a normalization layer we create
a new layer on which we can easily apply LRP. We ex-
plicit parameters of this new layer for BN used before or
after activation. In practice, the method is tested on two
trivial data-sets : MNIST and CIFAR-10 and more com-
plex scenes from ImageNet data-set. Several conclusions
emerge from this study, mainly we show an improvement
using our method compared with baseline i.e., bypassing
normalization layers. Our study seems to show that the
more inputs will be complex, the more benefits achie-
ved with our method will be important. Furthermore, we
have noticed that using LRP with a fully connected layer
containing BN leads to irrelevant heat-maps in the case of
MNIST data-set. There is no proof that this observation is
true for all data-sets, care must be taken with this configu-
ration. For future work, other normalization can be tested
to evaluate the impact of our method and the improvement
provided. The case of fully connected layer should be exa-
mined in detail to ensure that this very particular data-set
is not involved in the bad results. Finally, in this work, we
chose to evaluate the heat-maps qualitatively, the develop-
ment of a method to measure the accuracy of a heat-map
would give a more reliable comparison between all our re-
sults and might also be a research track.
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