An Efficient Pyramid Network for refined edge detection
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Abstract

Category-aware semantic edge detection can be seen as
an extension of edge detection where edge maps distin-
guish categories of objects in the scene. Obtaining both
precise shape and well categorized boundaries is a chal-
lenging double task. This paper presents an improved ar-
chitecture for semantic edge detection called Edge Pyra-
mid Network (EPN), which effectively combines low-level
and high-level features to produce smoother edges. Obser-
ving the impact of misalignment and loss functions on trai-
ning effectiveness, we propose a fine-tuning strategy which
incrementally improves edge detection accuracy through
alternated training cycles using the weighted negative and
the unweighted loss functions. Before applying the fine-
tuning strategy, our network already outperforms state-of-
the-art semantic edge detection networks on the benchmark
datasets SBD and Cityscapes. The performance is fur-
ther improved using our fine-tuning strategy (+0.85% and
+1.78% compared to STEAL on SBD and Cityscapes data-
sets, respectively). Furthermore, we show that EPN archi-
tecture achieves competitive performance (ODS F-measure
of .830) against the state-of-the-art category-agnostic edge
detection networks on the BSDS500 dataset.

Keywords

Semantic Edge Detection, Feature Pyramid Network, Fine-
tuning Strategy.

1 Introduction

For some vision applications, it is necessary to make a very
precise edge detection and a semantic classification as well.
Category-aware semantic edge detection can be seen as an
extension of edge detection where edge maps distinguish
categories of objects in the scene. This is a multi-label pro-
blem more difficult to solve than binary edge detection in
itself. Recently, significant progress has been made with
deep learning and CASENet [3] was presented as an effec-
tive architecture to achieve both tasks in a single end-to-end
deep network. But obtaining both precise shape contours
and well categorized contours is a challenging double task
due to two major problems : first, misalignment and noise

in human annotated edges in the available data sets, se-
condly imbalance in number of pixels between the class
labelled "edge" and the class labelled "non-edge". This lat-
ter problem is usually addressed using a weighted cross en-
tropy loss in network training, while the first requires cor-
recting label noise during training. However, we can ob-
serve a pernicious side effect in Fig. 1. : the detected edges
are thicker than the ground truth ones, i.e. more false posi-
tive edges are produced.
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FIGURE 1 — From left to right : original image, ground
truth, CASENet [3] + NMS edge-thinning, SEAL [4],
STEAL [5] and the proposed EPN.

This paper presents an improved architecture for seman-
tic edge detection called Edge Pyramid Network (EPN),
which effectively combines low-level and high-level fea-
tures. Observing that the accuracy of semantic edge detec-
tion can be significantly improved by replacing the weigh-
ted cross-entropy loss by the unweighted one, we propose
a new strategy for fine-tuning to incrementally improve
edge detection accuracy and provide thin edges by alterna-
ting training cycles with various loss functions, including
a weighted-negative loss to address the misalignment. The
rest of the paper is organized as follows : section 2 reviews
the related work, the architecture design and training stra-
tegy of our network are presented in section 3 and experi-
ments and accuracy evaluation against the state-of-the-art
algorithms on popular benchmark datasets such as SBD,



Cityscapes and BSDS500 are given in section 4, before to
conclude.

2 Related Work

Semantic Edge Detection. Early algorithms address the
semantic edge detection task by multi-stages systems. Ha-
riharan et al. proposed inverse detectors built on the output
of bottom-up contour and object detectors [1]. Bertasius
et al. introduced a high-for-low approach to predict ob-
ject boundaries using high-level object from semantic seg-
mentation [13]. Xie et al. [7] used a multi-scale and multi-
level feature for a rich hierarchical representation learning
in their holistically-nested edge detection network (HED).
Inspired by the latter, Yu et al. [3] developed CASENet,
an end-to-end semantic edge detection network, where se-
mantic final edge maps use shared low-level edges extrac-
ted from bottom layers of deep convolutional networks
VGG [9] and ResNet [10]. A multi-label loss function is
proposed to supervise the category-wise edge fused activa-
tions. By analyzing the fusion way of CASENet, Hu et al.
proposed a dynamic feature fusion strategy to learn better
weights for each location of the feature map [6]. Recent
works argued that misalignment and noise in human an-
notated edges in the available data sets can degrade edge
accuracy and propose to apply correcting strategies during
CASENet training. Yu et al. considered the edge alignment
as latent variable optimization in a probabilistic model to
propose SEAL algorithm [4]. Inspired by Non-Maximal
Suppression NMS edge-thinning algorithm [17], Acuna et
al. proposed to add a boundary thinning layer and an ac-
tive alignment scheme that can be plugged on top of any
boundary detection architecture [5].

Weighted and unweighted cross-entropy loss. The imba-
lance in number of pixels between the classes is usually
addressed using a weighted loss function in network trai-
ning [7] [14] [15] [8] [12] [3]. In HED network, a class-
balancing weight is introduced to automatically boost and
reduce the positive and negative losses, respectively [7].
Without this weight, HED failed to detect salient edges
by producing an embossed edge image, as shown in [12].
In contrast, using unweighted cross-entropy loss for the
category-aware edge detection task can make a significant
improvement of accuracy, as described in [4]. However,
fine-tuning a network using unweighted cross-entropy loss
from a model pre-trained on the general image classifica-
tion task as ImageNet [29] is not trivial, since the loss at
the beginning is very large. To address this issue, SEAL [4]
used a warm-up model obtained by additionally training a
few iterations from an initialized model.

Low-level and high-level features combination.
Weighted-fusion layer is a popular technique to combine
low-level and high-level side outputs in category-agnostic
edge detection networks [7] [14] [8]. This fusion way was
then extended in semantic edge detection networks [3] [4]
[5] by sharing a concatenation layer where the semantic
edge maps use the same low-level edges from bottom

layers. Feature Pyramid Network (FPN) [11] provides
a relevant way to build image features from all levels
via a top-down pathway and lateral connections. This
architecture is widely used as a feature extractor in many
computer vision applications such as object detection [16]
[18], instance segmentation [19] or semantic segmentation
[20]. The most advanced work discussed here has inspired
our Edge Pyramid Network (EPN) architecture. It inte-
grates but simplifies ResNet and FPN to produce smoother
edges. Observing the impact of misalignment and loss
functions on training effectiveness, we have developed the
new fine-tuning strategy described below to obtain a more
precise and finer edge map.

3 Edge Pyramid Network

As previous category-aware edge detection networks [3]
[6] [4] [5], the proposed network, Edge Pyramid Network
(EPN), produces multiple edge maps corresponding to dif-
ferent object categories.
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FIGURE 2 — Architecture of Edge Pyramid Network (EPN).

3.1 Network Architecture

EPN architecture is based on ResNet-101 [10] for bottom-
up pathway and FPN [11] for top-down pathway and lateral
connections.

Bottom-up pathway. We keep only convolution blocks in
ResNet-101 and change the stride of the first and the last
blocks from 2 to 1, as in CASENet [3]. Therefore, the re-
solution of features from the first to the fifth blocks are res-
pectively 1, 1/2, 1/4, 1/8, 1/8, as illustrated in Fig.2. We use
the output from the last layer of each scale residual block,
denoted as {C>, C3, Cs}. In fact, C; does not contain se-
mantic information and C}; has the same resolution as Cf.
Top-down pathway and lateral connections. To extract
semantic multi-scale features, we attach a K-channels 1x1
convolution layer on each output of stage’s last residual
blocks {C2, C3, C5}, where K is the number of categories.



From the last residual block, the coarsest resolution seman-
tic edge map P; is bilinearly upsampled by a factor of 2,
and then merged with the lateral connection from C'3 by
element-wise addition. Using this process, we obtain others
semantic edge maps { P3, P», P, } corresponding to the re-
solutions of 1/4, 1/2 and 1. Note that no lateral connection
from C is included into the pyramid. Therefore, the final
semantic edge map P; which has the finest resolution is
directly upsampled from P». Finally, we append a multi-
label loss layer to P, for the semantic supervision. We do
not append a 3x3 convolution layer on each map, as in FPN
[11]. More details of the FPN architecture can be found in
[11].

3.2 Multi-label unweighted loss

HED [7] is the first category-agnostic edge detection net-
work that uses the weighted cross-entropy loss to deal with
the class imbalance issue. The positive and negative losses
are weighted respectively by the proportion of edge and
non-edge to the total number of pixels of the ground truth.
This weighting was then widely used in category-agnostic
and category-aware edge detection networks [14] [15] [8]
[12] [3]. Inspired by [4], we introduce the multi-label un-
weighted cross-entropy loss which was successfully used
for the category-aware edge detection :
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are the positive and negative loss of the k-th semantic cate-
gory.
3.3 Multi-label weighted-negative loss

We propose a multi-label weighted-negative loss, inspired
by [16] :
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The false positive pixels are usually located around thick fi-
nal edges due to the label misalignment in the ground truth.
Therefore, our loss aims to reduce the contribution of ne-
gative examples, especially on misclassified non-edge, i.e.

false positive pixels. In fact, when a non-edge pixel is mis-
classified with small Pr(y = 0|X; W), the negative loss
is down-weighted. Intuitively, these decreases help the net-
work to automatically focus on edge pixels and to be ea-
sily trained without using class weight balancing. In the
next section, we describe our training strategy for an effec-
tive fine-tuning of the network using the unweighted and
weighted-negative cross-entropy losses.

3.4 Fine-tuning Strategy

To iteratively train EPN, we adopt the strategy illustrated in
Fig. 3. We denote M,Si) and Ml(;l as the i-th trained models
using the unweighted and weighted-negative cross-entropy
losses, respectively.

Initialization step We first initialize the convolution
blocks and the K-channels convolution layer on C5 with
the pre-trained model of CASENet [3]. By training our net-
work with the unweighted cross-entropy loss (Eq. (1)), we
obtain the first trained model 1/ 750). We then apply a 2-steps
fine-tuning strategy defined following :

Thick edge detection step By initializing all the layers
from unweighted model M&Z), we fine-tune EPN with the
weighted-negative cross-entropy loss. As described in Eq.
(3), the contribution of false positive pixels around edge
ground truth to the total loss is almost reduced to zero.
As a result, the weighted-negative model M, (ijl) acts as
a thick edge detection module which easily accepts edge
pixels around ground truth, as shown in the first row of
Fig. 3.

Thin edge detection step Similarly to the thick edge de-
tection step, we fine-tune EPN with the unweighted cross-
entropy loss from the weighted-negative model quf)_ Wi-

thout the modulating factor Pr(y; = 0|X;W)?, M fo-
cus on the misclassified non-edge pixels which are almost
ignored in Ml(fl In other words, the network attempts to
eliminate false positive and find more accurate pixels in-
side thick edges, as illustrated in the second row of Fig.
3.

From the model obtained in the initialization step M&O),
we perform alternately and iteratively the thick and thin
edge detection steps. This process is composed of succes-
sive training cycles [M{) — M) as follows :

M) = M2 — M) P - M)

The unweighted model M s finally chosen as the final
model for evaluation, due to its more accurate edge maps.

4 Experiments

In this section, we compare EPN with state-of-the-art se-
mantic edge detection algorithms CASENet [3], SEAL [4]
and STEAL [5].

4.1 Datasets and Evaluation Protocol

Semantic Boundary Dataset (SBD) This dataset is com-
posed of 11355 images from PASCAL VOC2011 [1], di-
vided into 8498 training and 2857 test images. This da-



FIGURE 3 - Intermediate results of our fine-tuning strategy. From left to right : original image with the ground truth label

corresponding to the category of aeroplane, thick edge maps from MS_), Mf_), MS’Z models (first row); thin edge maps

from Méo), M&l), ng), Mf') models (second row).

taset contains 20 categories for semantic boundary detec-
tion. Due to the label misalignment, SEAL [4] re-annotated
1059 test images with high quality labels for more reliable
results.

Cityscapes Dataset This dataset consists of 2975 training
images, 500 for validation and 1525 for test. The validation
images are used for test set because of the unavailability of
test labels. Therefore, we use 2975 images for training and
500 others for testing without mixing. In our experiments,
the same 19 semantic classes among 30 categories are se-
lected for the benchmark, as others semantic edge detection
algorithms [3], [4], [5].

Evaluation Protocol We use the standard performance
metric F-measure (MF) at optimal dataset scale (ODS) for
evaluation. We report the edge detection accuracy for each
class using the evaluation protocol from [4]. We use “Thin”
setting in all our experiments and apply a standard non-
maximum suppression (NMS) to the edge maps for eva-
luation, as in other category-agnostic and category-aware
edge detection algorithms [7] [15] [8] [5].

4.2 Implementation Details

Data augmentation We follow [4] to generate ground truth
labels for training our model. For data augmentation, we
resize images with scaling factors 0.5, 0.75, 1.0, 1.25, 1.5
in SBD and keep original resolution in Cityscapes.
Hyper-parameters For training, we choose stochastic gra-
dient descent (SGD) for both SBD and Cityscapes data-
sets with the same hyper-parameters : batch size (1), lear-
ning rate (le-7), gamma (0.1), iteration size (10), step size
(10k), momentum (0.9), weight decay (0.0005), crop size
(352x352). We stop training cycles when there is no more
improvement of accuracy on the test set. The iteration num-
bers of fine-tuning steps are empirically set to 22000 and
20000 on SBD and Cityscapes, respectively. Each fine-
tuning step takes about a day on a single GeForce GTX
1080 Ti GPU.

Caffe framework We implement our network using Caffe
framework. For the multi-label loss, we modify the data in-
put and sigmoid cross-entropy layers from the implemen-
tation of RCF [8] for more lightweight data storage com-
pared to [4].

4.3 Results on SBD

Table 1 reports the MF scores of semantic edge detection
algorithms on the re-annotated SBD test set under Instance-
sensitive (IS) and Non-Instance-sensitive (non-IS) modes,
respectively. We additionally evaluate the CASENet mo-
del which is fine-tuned with unweighted cross-entropy loss
using its trained model on SBD dataset [3], denoted as
CASENet-U. Note that we train and evaluate our network
under two different modes for fair comparison with SEAL
[4] and STEAL [5]. After three training cycles, our model
M¥ outperforms SEAL and STEAL by 1.9% and 0.85%
respectively in MF (ODS). We also report the performance
of our network on the original SBD test set following the
evaluation protocol from [1], as in Table 2 where our model
Mq([?’) achieves comparable performance to SEAL (+0.1%),
but worse than STEAL (-1.1%). The accuracy of our mo-
del degrades compared to the edge alignment algorithms
due to the noisy ground truth test labels from the original
SBD dataset.

Edge pyramid architecture. In Fig. 4, we show interme-
diate edge maps extracted from all side outputs. The top-
down pathway and lateral connections help the edge map
evolves progressively from coarse to fine. The pyramid ar-
chitecture also makes our thinned edge map after NMS
looks smoother relative to the ones obtained by SEAL and
STEAL, as illustrated in Fig. 1. We also examine the effect
of NMS on thinning edge maps under Non-IS mode. Using
NMS increases MF from 66.9 to 67.0 for SEAL, 66.0 to
67.9 for STEAL and 67.0 to 69.0 for EPN (Még)).
Additionally, we compare EPN and CASENet-U which is
fine-tuned with the unweighted cross-entropy loss. As re-



TABLE 1 — MF scores on the re-annotated SBD test set with Instance-sensitive

modes following the evaluation protocol from [4].

(IS) and Non-Instance-sensitive (Non-IS)

Mode Method aero bike bird boat | bottle | bus car cat chair | cow | table | dog | horse | mbike | person | plant | sheep | sofa | train tv mean

CASENet 74.5 59.7 734 48.0 67.1 78.6 67.3 76.2 47.5 69.7 36.2 75.7 72.7 61.3 74.8 42.6 71.8 489 71.7 549 63.6

IS CASENet-U | 77.3 63.7 | 755 53.0 | 69.2 802 | 709 | 79.4 | 50.0 | 743 | 42.6 | 784 | 744 64.5 77.1 479 | 75.0 | 51.5 | 73.8 | 60.6 | 67.0

SEAL 78.0 | 658 | 76.6 | 524 | 68.6 80.0 | 704 | 794 | 50.0 | 72.8 | 414 | 78.1 75.0 65.5 8.5 494 | 733 522 | 739 | s58.1 67.0

EPN (]\Iﬁx)) 80.8 | 67.7 | 768 | 57.6 | 69.6 | 814 | 72.6 | 803 | 534 | 74.6 | 435 | 79.9 | 717 68.0 78.7 493 | 77.5 | 52.3 | 754 | 614 | 68.9

CASENet 74.84 | 60.17 | 73.71 | 47.68 | 66.69 | 78.59 | 66.66 | 76.23 | 47.17 | 69.35 | 36.23 | 75.88 | 72.45 | 61.78 | 73.10 | 43.01 | 71.23 | 48.82 | 71.87 | 54.93 | 63.52

Non-IS STEAL 80.15 | 67.80 | 77.69 | 54.26 | 69.54 | 81.48 | 71.34 | 78.97 | 51.76 | 73.61 | 42.82 | 79.80 | 76.44 | 67.68 | 78.16 | 50.43 | 75.06 | 50.99 | 75.31 | 59.66 | 68.15

EPN (M, ,(,,3)) 81.0 | 68.1 772 | 57.6 | 694 814 | 721 804 | 527 | 748 | 435 | 80.1 71.6 68.6 78.2 49.7 | 769 | 522 | 759 | 61.5 | 69.0
TABLE 2 — Results on the original SBD test set following the evaluation protocol from [1].

Method aero | bike | bird | boat | bottle | bus | car | cat | chair | cow | table | dog | horse | mbike | person | plant | sheep | sofa | train | tv | mean

CASENet | 83.3 | 76.0 | 80.7 | 634 | 69.2 | 81.3 | 749 | 832 | 543 | 748 | 464 | 80.3 | 802 | 76.6 80.8 | 533 | 772 | 50.1 | 759 | 66.8 | 714

CASENet-U | 85.1 | 79.3 | 848 | 68.1 | 71.8 | 83.4 | 76.6 | 85.6 | 58.5 | 78.7 | 51.9 | 83.0 | 823 | 78.1 84.6 | 57.7 | 79.1 | 522 | 782 | 693 | 744

SEAL 84.9 | 78.6 | 84.6 | 66.2 | 71.3 | 83.0 | 76.5 | 87.2 | 57.6 | 77.5 | 53.0 | 83.5 | 822 | 783 85.1 587 | 789 |53.1 | 77.7 | 69.7 | 744

STEAL 85.8 | 80.0 | 85.6 | 684 | 71.6 | 857 | 78.1 | 87.5 | 59.1 | 78.5 | 53.7 | 84.8 | 834 | 79.5 853 | 60.2 | 79.6 | 53.7 | 80.3 | 71.4 | 75.6

EPN (M,S,B)) 87.3 | 80.2 | 844 | 69.1 | 724 | 83.8 | 76.3 | 84.3 | 589 | 76.8 | 51.4 | 823 | 82.6 | 783 834 | 58.0 | 80.6 |51.9 | 77.7 | 70.5 | 745

FIGURE 4 — From left to right : original image, interme-
diate results of EPN corresponding the category of bird
from Ps5, Ps, P;. The edge maps are displayed at the same
resolution for better view.

ported in Table 1 and 3, our model MI(LO) achieves MF
68.3%, 1.3% higher than CASENet-U. This demonstrates
that the feature pyramid in EPN combines better multi-
scale features than the fusion way in CASENet when using
the unweighted cross-entropy loss.

Fine-tuning strategy. Fig. 3 shows intermediate results
of our fine-tuning strategy on the SBD dataset. While the
weighted-negative models reduce gradually false positives,
the unweighted models make edge maps become crisper
after each training cycle. The improvement which can be
easily observed on the wing and belly of the airplane illus-
trates the role of the weighted-negative and unweighted
losses in the fine-tuning steps. The increases on the accu-
racy of intermediate models Mq(f) reported in Table 3 also
demonstrate quantitatively the effectiveness of our strategy.
Note that our first model M,SO) already outperforms the ali-
gnment learning algorithms SEAL and STEAL.

TABLE 3 — MF scores of our intermediate models on the
re-annotated SBD test set.

Mode Baseline MO | v | @ | )
IS 67.0 (SEAL) | 683 | 68.7 | 689 | 689
Non-IS | 68.15 (STEAL) | 68.2 | 68.7 | 689 | 68.9

Weighted cross-entropy loss. We examine the effect of

the weighted cross-entropy loss on our architecture. By ini-
tializing the convolution blocks of ResNet with the model
pre-trained on MS COCO [21], we keep all settings as de-
fault and finish the training after 22000 iterations as CA-
SENet. The average accuracy of EPN on the original SBD
degrades compared to CASENet. Unlike the unweighted
cross-entropy loss, the weighted one makes the network
produce more false positive edges which are accumulated
through the pyramid architecture due to the label misalign-
ment in the ground truth dataset. In contrast, when using
the weighted cross-entropy for the category-agnostic edge
detection task on a high quality label dataset as BSDS500,
we obtain much better results than CASENet architecture,
as described in Section 4.5.

Several variants. We investigated several variants of our
network such as addition of feature map from the first stage
to the pyramid, keeping the 3x3 convolution layer on each
map as in FPN, imposing deep semantic supervision on
other side outputs, replacing the initialization model CA-
SENet by CASENet™ or DSN [3]. However, they yielded
no improvement.

4.4 Results on Cityscapes

As done for SBD, we also train and evaluate EPN with IS
and non-IS modes on the Cityscapes dataset. In the Table
4, EPN achieves better performance compared to SEAL
(3.7%) and STEAL (1.78%) after three and five training
cycles. Note that our first model MI(LO) gets MF scores
71.1% and 71.5% under IS and non-IS modes, higher than
SEAL (69.1%) and STEAL (71.42%), respectively. Com-
pared to SBD, our network gives better results in Citys-
capes due to the higher label annotation quality in this da-
taset.

Matching distance tolerance We evaluate the crispness
of predictions by varying the maximum tolerance allowed
for matching contours as illustrated in Table 5. When de-
creasing the matching distance tolerance from 0.0035 to
0.0015, the MF difference between EPN and STEAL in-
creases from 1.8% to 3.6%. This demonstrates that EPN



TABLE 4 — MF scores on the Cityscapes validation set with Instance-sensitive (IS) and Non-Instance-sensitive (Non-IS)

modes following the evaluation protocol from [4].

Mode Method road | sidewalk | building | wall | fence | pole | t-light | t-sign

veg

terrain | sky | person | rider car truck bus train | motor | bike | mean

86.2
87.6
89.0

74.9
77.5
78.7

74.5
75.9
79.1

47.6
47.6
49.4

46.5
46.3
50.2

72.8
75.5
81.9

75.4
78.9

IS SEAL
EPN (M)

712
78.3

79.3
80.9
83.5

57.0
60.1
61.0

80.4
81.5
84.1

88.3
88.9
91.1

55.8
527
59.5

67.8
71.9

68.9
73.1

87.4
89.3

50.2
55.1

44.1
53.2

73.0
76.1

69.1
72.8

CASENet
STEAL

EPN (M)

87.06
88.94
89.3

75.95
78.21
79.0

75.74
717.75
79.9

46.87
50.59
49.9

4774
50.39
50.7

73.23
75.54
82.2

72.70
76.31
79.6

75.65
77.45
79.2

Non-IS

is able to capture more accurate and crisper edges compa-
red to STEAL. As already presented in Fig. 1, our network
produces smoother edge map than others.

TABLE 5 — MF with different matching distance tolerances
on Cityscapes validation set.

Method 0.0035 0.0025 0.0015
STEAL 71.4 66.8 57.8
EPN 73.2 (+1.8) | 69.3 (+2.5) | 61.4 (+3.6)

4.5 EPN with Edge Detection on BSDS500

We investigate EPN for the category-agnostic edge detec-
tion task. We evaluate our architecture and fine-tuning stra-
tegy on BSDS500 dataset [27] which is composed of 200
training, 100 validation and 200 test images.
Implementation details. In this dataset, each image has
manually labelled ground truth contours by several anno-
tators. Thus, using the unweighted and weighted-negative
losses may omit weak edges in the ground truth labels. Ins-
tead, we adopt the annotator-robust loss function from RCF
[8], an improvement of the weighted cross-entropy loss,
whose 7 and \ are set to 0.4 and 1.1, respectively. We keep
other settings and hyper-parameters as default. The archi-
tecture is also adapted to the category-agnostic edge detec-
tion task. We add the feature extracted from C'1 to the py-
ramid and place the deep supervision on top of all side out-
puts { P1, P>, P53, P} in order to better preserve low-level
edges from bottom layers. During the data augmentation,
we follow the same procedure as described in [7]. Inspired
by [15] [25] [12] [8] [26], we employ the PASCAL VOC
Context dataset [28] and adapt it to our fine-tuning stra-
tegy. Using the same hyper-parameters and loss function,
we train alternately and iteratively our network on two da-
tasets. By denoting M\(/Zoc and M ](3% pg as the i-th trained
models using PASCAL VOC and BSDS500 datasets res-
pectively, we obtain training cycles as follows :

[M\(/lc))c - MS;DS] - [M\(/%c - MI(BQ.S)”DS] e

We start the fine-tuning strategy by the initialized model
of ResNet-101 which is pre-trained on ImageNet [29]. Fi-
nally, we also use the NMS and the multi-scale testing for
evaluation as in other works [25] [12] [8] [26].

Results. Table 6 reports the two standard measures : ODS
and OIS (per-image best threshold) of the deep learning
based contour detection algorithms on BSDS500 dataset.

After four training cycles, our network M 1(343), pg achieves

80.42
82.28
84.2

57.717
60.19
60.7

86.69
87.99

89.8

81.02
82.48
84.0

67.93
70.18
74.1

89.10
90.40
91.1

45.92
53.31

55.3

68.05
68.50
72.5

49.63
53.39
50.8

54.21
56.99
59.8

73.74
76.14
71.9

68.92
71.42

73.2

TABLE 6 — The comparison with contour detection net-
works on BSDS500 [27] dataset. MS stands for multi-scale
testing. VOC stands for training with additional data from
PASCAL VOC.

Method | ops | OIS
N%-Fields [24] 753 | 769
DeepEdge [23] 753 1 .772
DeepContour [22] 153 | 772
HFL [13] 767 | 788
HED [7] 788 | .808
RDS [14] 792 | 810
CEDN [15] 788 | .804
CASENet [3] 767 | 784
CED [25] 794 | 811
Res16x-CED-MS [25] 810 | .829
Res16x-CED-MS-VOC [25] | .822 | .840
LPCB [12] 800 | .816
LPCB-VOC [12] 808 | .824
LPCB-MS-VOC [12] 815 | .834
RCF [8] 806 | .823
RCF-ResNet101-VOC [8] 812 | .829
RCF-ResNet101-MS-VOC [8] || .819 | .836
BDCN [26] 806 | .826
BDCN-VOC [26] 820 | .838
BDCN-MS-VOC [26] 828 | .844
EPN 810 | 823
EPN-VOC (M2 o) 823 | .836
EPN-MS-VOC (M52 ,¢) 830 | .843

ODS=.830 and OIS=.843 in multi-scale testing, competing
with all other networks. The performance of our network is
gradually improved through training cycles in single scale
prediction (w/o MS) and multi-scale testing (w/ MS), as
reported in Table 7.

Only using BSDS500 dataset. Note that if we only use
BSDS500 dataset for training without additional data from
PASCAL VOC, EPN achieves state-of-the-art results on F-
measure ODS (.810) in single scale prediction. Compared
to CASENet, our architecture is 5.1% and 3.9% higher on
ODS and OIS, respectively. This accounts for the effecti-
veness of EPN in general edge detection task.

Merging PASCAL VOC and BSDS500 datasets. We also
examine the impact of label quality on our network. The
BSDS500 dataset which is designed for natural edge de-
tection task has much higher quality of ground truth than
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FIGURE 5 — Qualitative results on the SBD dataset. From left to right : original image, SEAL [4], STEAL [5], EPN, ground

truth.

FIGURE 6 — Qualitative results on the Cityscapes validation set. From left to right : original image, STEAL [5], EPN, ground

truth.

TABLE 7 — F-measure ODS of intermediate models with
and without multi-scale testing on the BSDS500 dataset.
1) (2) (3) (4)
Model | Mpsps | Mpsps | Mpsps | Mpsps
w/o MS .8200 8217 .8228 .8231
w/ MS .8275 .8297 .8303 .8298

PASCAL VOC. For this reason, we fine-tune our network
with BSDS500 after pre-training with PASCAL VOC. Ho-
wever, when merging both datasets for training, the per-
formance is decreased from .820 (M ](31; pg) to .802 ODS
F-measure in single scale prediction. This degradation de-
monstrates that using weighted cross-entropy loss in EPN
architecture do not work well with noisy label data such as
PASCAL VOC. This observation was already made on our
experiment on SBD dataset as mentioned in Section 4.3.

5 Conclusion

Our original Edge Pyramid Network (EPN) is able to
provide very accurate semantic edges by combining low
and high level features. The fine-tuning strategy alterna-
tively performing thick and thin edge detection using the
weighted-negative and unweighted cross-entropy losses
respectively also appears to be quite efficient. Before ap-

plying it, our network already produces better results than
state-of-the-art semantic edge detection algorithms on SBD
and Cityscapes datasets. Using our fine-tuning strategy,
the performance is further improved after several trai-
ning cycles. Additionally, the proposed EPN architecture
achieves competitive performance against state-of-the-art
algorithms for the category-agnostic edge detection task on
the BSDS500 dataset. This demonstrates the effectiveness
of the proposed architecture as well as the fine-tuning stra-
tegy for category-aware and category-agnostic edge detec-
tion tasks.
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